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We present a spectral method for solving elliptic equations which arise in general
relativity, namely three-dimensional scalar Poisson equations, as well as generalized
vectorial Poisson equations of the type1 EN + λ E∇( E∇ · EN) = ES with λ 6= −1. The
source can extend in all the Euclidean spaceR3, provided it decays at least asr −3.
A multidomain approach is used, along with spherical coordinates (r , θ, φ). In each
domain, Chebyshev polynomials (inr or 1/r) and spherical harmonics (inθ andφ)
expansions are used. If the source decays asr−k the error of the numerical solution
is shown to decrease at least asN−2(k−2), whereN is the number of Chebyshev
coefficients. The error is even evanescents; i.e., it decreases as exp(−N), if the
source does not contain any spherical harmonics of indexl ≥ k− 3 (scalar case) or
l ≥ k− 5 (vectorial case). c© 2001 Academic Press
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1. INTRODUCTION

1.1. Scalar and Vectorial Poisson Equations with Noncompact Sources

The most common elliptic equations which occur in numerical relativity (for a recent
review see [1]) are the scalar Poisson equation

1F = S (1)

and the (generalized) vector Poisson equation

1 EN + λ E∇( E∇ · EN) = ES, (2)
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whereλ is a constant different from−1, typicallyλ= 1/3. Contrary to the Newtonian case,
where the source termS contains only the matter density, the sources of these equations
have a noncompact support. Moreover, the Einstein equations being nonlinear, the sources
Sand ESdepend (usually quadratically) on the solutionsF and EN. This means that Eqs. (1)
and (2) must be solved by iteration.

More precisely, within the 3+ 1 formalism (also calledCauchy formulation) of general
relativity (see [2] for a review), the 10 Einstein equations can be decomposed into a set of six
second-order evolution equations and four constraint equations: a scalar one, the so-called
Hamiltonian constraint, and a vectorial one, the so-calledmomentum constraint(see [3]
for an extensive discussion of the constraints equations). The PDE type (i.e., hyperbolic,
parabolic, or elliptic) of these equations depends on the coordinates chosen to describe
the space–time manifold. Let us recall that within the 3+ 1 formalism, the space–time is
foliated in a family of space-like slices6t , labeled by the time coordinatet. The space–time
4-metric is then entirely described by the induced 3-metricγi j of the hypersurfaces6t along
with the extrinsic curvature tensorKi j of 6t .

In this context, a typical example of Eq. (1) is the equation for the lapse function for
the choice of time coordinate corresponding to amaximal slicingof space–time1 (see, e.g.,
[4]). Another example is provided by York treatment of the initial-value problem of general
relativity [5], according to which the Hamiltonian constraint equation results in an elliptic
equation of type (1) for the conformal factor of the spatial metricγi j , with a termF−7 in S.

Regarding the vector Poisson equation (2), it also appears in York formulation of the
initial-value problem for the vector which enters in the longitudinal part of the transverse-
traceless decomposition of the extrinsic curvature tensorKi j . Indeed the momentum con-
straint determines the longitudinal part ofKi j according to the equation2

∇ j K
i j = 8π Ji , (3)

where∇ j is the covariant derivative associated with the 3-metricγi j , Ji is the matter
momentum density, and maximal slicing is assumed (K i

i = 0). More generally, the vector
Poisson equation (2) withλ = 1/3 occurs each time one has to perform the transverse-
traceless decomposition of a symmetric tensor fieldTi j defined on a Riemannian three-
manifold with metricγi j . Following [5, 6], this decomposition writes

Ti j = Ti j
TT + (LY)i j + 1

3
Tγ i j , (4)

whereT = γkl Tkl · Ti j
TT is the transverse-traceless part,(LY)i j the longitudinal trace-free

one, and1
3Tγ i j the trace part. The longitudinal part is expressible in terms of a vectorYi ,

by means of the conformal Killing operator:

(LY)i j = ∇ i Y j +∇ j Yi − 2

3
γ i j∇kYk. (5)

Performing the decomposition reduces to the finding of the vector fieldEY. Considering the

1 This Poisson equation for the lapse function reduces to the usual Poisson equation for the gravitational potential
at the Newtonian limit.

2 Einstein convention of summation on repeated indices is used.
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divergence of Eq. (4),EY appears to be the solution of the equation

1Yi + 1

3
∇ i (∇ j Y

j ) = ∇ j

(
Ti j − 1

3
Tγ i j

)
− Ri

j Y
j , (6)

where Ri
j is the Ricci tensor associated with the metricγi j . This is a vectorial Poisson

equation of type (2) withλ = 1
3 (involving the so-called conformal Laplace operator). Let

us mention that, in the general case, it must be solved by iteration forEY is present in the
source term.

Another example of the vectorial Poisson equation (2) is provided by the so-calledmini-
mal distortion[4] choice of coordinates in the spatial hypersurfaces6t . The unknown vector
EN is in this case theshift vectorwhich defines the propagation of the spatial coordinates
xi from one slice6t to the next one6t + dt. It is this vectorial Poisson equation, which is a
special form of Eq. (2) withλ = 1

3, that originally motivated our study of this subject. Let us
mention that the conformal Killing operator and the associated vectorial Poisson equation
also appear in the “thin-sandwich” formulation, where the spatial geometry is given on two
close hypersurfaces (see [3, 7] for more details).

1.2. Treatment by Means of Spectral Methods

Solving elliptic equations is often considered as a CPU time consuming task. Spectral
methods [8, 9] seems attractive in this respect because they provide accurate results with
reasonable sampling, as compared with finite difference methods, for example. We refer
the interested reader to [10, 11] for a review of the use of spectral methods in relativistic
astrophysics. Let us simply mention here that our group has previously developed a spectral
method, using Chebyshev polynomials and spherical harmonics to solve three-dimensional
scalar Poisson equations with a compact source [12]. However, as recalled above, the elliptic
equations which arise from numerical relativity have noncompact sources. This means in
particular that infinity is the only location to impose exact boundary conditions (flat space–
time). In order to tackle this, we have introduced a multidomain approach [13] within which
the last domain extends up to infinity, thanks to some compactification. This approach has
another nice feature, for it is avoiding Gibbs phenomena: a physical discontinuity can be
located at the boundary between two domains so that all the considered fields are smooth
in each domain.

In this article, we extend the single-domain spectral method for the scalar Poisson equation
(1) presented in [12] to the multidomain case, which enables in particular to treat noncompact
sources provided they decay at least asr−3 whenr → ∞. Based on this scalar Poisson
solver, we treat the generalized vectorial Poisson equation (2). We consider three different
schemes proposed in the literature to reduce the resolution of (2) to four scalar Poisson
equations, namely the schemes of Bowen and York [14], Oohara and Nakamura [15], and
Oohara, Nakamura, and Shibata [16]. These schemes have been originally implemented on
finite (single) domains and with finite difference methods. We study here their applicability
to infinite domains and spectral methods.

The solvers presented in this work deal with three-dimensional flat spaces whereE∇
denotes the ordinary derivation. More general cases (i.e., Laplacian operator associated
with a curved metric) can be solved by iteration. In all the following we will assume that
there exists a unique solution of both the scalar and the vectorial equation that isC∞ by parts,
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C1 everywhere, and that is going to zero at infinity. For known results about the existence
and uniqueness of solution of partial derivative systems see, for example, [17].

This paper is organized as follows. In Section 2 we present the numerical scheme used
to solve the scalar Poisson equation with our multidomain spectral method. This scheme
is tested in Section 3 using comparison with analytical solutions of various behaviors.
This study leads us to establish the convergence properties of the algorithm. Section 4 is
devoted to the study the three different schemes mentioned above to solve the vectorial
Poisson equation (2). As for the scalar Poisson equation, the implemented schemes are
tested in Section 5 and their convergence properties exhibited. In Section 6 we give some
indication about some extensions of this work that have been successfully conducted or
under investigation.

2. SCALAR POISSON EQUATION

2.1. Spectral Expansions

As described in previous articles [10, 12], spherical coordinates(r, θ, φ) are used; the
fields are expanded in spherical harmonicsYm

l (θ, φ) and a Chebyshev expansion is per-
formed with respect to ther coordinate. Doing so the resolution of the scalar Poisson
equation is reduced to find, for each couple (l, m) the solution of

d2 f

dr 2
+ 2

r

d f

dr
− l (l + 1)

r 2
f = s(r ), (7)

wheref ands are functions ofr solely, being respectively the coefficients ofYm
l in the

solutionF and in the sourceS.
f and s are expanded in Chebyshev polynomials (hereafter referred to asTi for the

polynomial of orderi) so that the inversion of the operator on the left-hand side of Eq. (7)
is reduced to a matrix inversion.

As recalled above, the present work improves that presented in [12] for we are allowing
a source that is not compactly supported. To take care of this, we will divide space in three
type of domains, following [13]
• Onekernel, a sphere centered at the origin and being the only domain considered in

[12]. In such a domainr is given byr = αx, wherex ∈ [0, 1], with α > 0. The functions
are expanded in Chebyshev polynomials inx with a definite parity to ensure regularity at
the origin: only even (resp. odd) polynomials are involved forl even (resp. odd).
• An arbitrary number, including zero, ofshells, domains wherer = αx + β, x ∈ [−1, 1].

We have the following conditions :α > 0 andβ ≥ α, so thatr is increasing withxand never
equal to zero. In the shells, the functions are expanded in usual Chebyshev polynomials,
with no parity requirement.
• One external domain, extending to infinity, wherer is given byu = r−1 = α(x − 1), α

being negative, andx ∈ [−1, 1]. Once more the functions are given as a sum of Chebyshev
polynomial inx.

2.2. The Matrices

Before doing any operator inversion, one has to take care of singularities at the origin
and at infinity. For example, because of division byr 2, the solution of the equation, must
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be decreasing asr 2 at the origin to be associated with a nonsingular source. We choose to
treat that by subtracting finite parts of the solution at the point of singularity.

Before describing that more precisely, let us mention another method for solving that
problem, presented in [12]. In [12] the functions are expanded on a new set of basis functions
that verify individually the regularity conditions (Galerkin basis). For example,Ti+2+ Ti

is used in the kernel, making all the basis functions decrease asr 2 at the origin.

• In the kernel, we have to take care of a singularity at the origin due to the division by
r 2. To avoid this we construct an operator without the finite part off at x = 0. Thus the
operator is, expressed in terms ofx,

A f = d2 f

dx2
+ 2

x

(
d f

dx
− d f

dx
(0)

)
− l (l + 1)

x2

(
f − f (0)− x

d f

dx
(0)

)
, (8)

the sources being multiplied byα2.
• In the shells there is no singularity, so we can multiply the source byr 2

α2 and invert the
following operator

A f =
(

x + β
α

)2 d2 f

dx2
+ 2

(
x + β

α

)
d f

dx
− l (l + 1) f. (9)

• In the external domain Eq. (7), once rewritten in terms ofu = 1
r , becomes

u4

(
d2 f

du2
− l (l + 1)

u2
f

)
= s. (10)

We consider the three following possibilities.

—First multiplying the source byr 4 in the external domain, a singularity occurs at
r = ∞; that is,x = 1. We handle it like in the kernel, by subtraction of the finite part off
in 1, and we use the following operator

A f = d2 f

dx2
− l (l + 1)

(x − 1)2

(
f − f (1)− (x − 1)

d f

dx
(1)

)
. (11)

—If the source is multiplied byr 3, a singularity occursr = ∞; that is,x = 1 and is
handled by the finite part method, so that the operator becomes

A f = (x − 1)
d2 f

dx2
− l (l + 1)

(x − 1)
( f − f (1)). (12)

—If the source is only multiplied byr 2, we invert the nonsingular operator

A f = (x − 1)2
d2 f

dx2
− l (l + 1) f. (13)

In all cases we have to multiplys by α2. Let us stress that those three operators are not
fully equivalent in actual physical calculations based on iterative schemes. The effective
source (i.e.,r kS) being given, the solution will have less high-frequency terms (Chebyshev
polynomials of high-order), if the numberk is high. Those high-frequency terms may cause
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instabilities in an iterative procedure, so we always use ther 4Sscheme except for a source
decreasing liker 3Sat infinity.

As an illustration, here is the matrix constructed in the kernel, withl = 2 and nine
coefficients inr (Chebyshev polynomialsT0, T2, . . . , T16)

0 0 56 96 304 480 936 1344 2144
0 0 56 240 472 1056 1656 2832 3992
0 0 0 144 432 848 1632 2512 3984
0 0 0 0 264 688 1320 2336 3528
0 0 0 0 0 416 1008 1888 3168
0 0 0 0 0 0 600 1392 2552
0 0 0 0 0 0 0 816 1840
0 0 0 0 0 0 0 0 1064
0 0 0 0 0 0 0 0 0


.

2.3. The Banded Matrices

The constructed matrices are not suitable for numerical purposes. The inversion would be
much more rapid and much more efficient if we could work on banded matrices instead of
triangular ones. The operators being second-order operators on a set of orthogonal functions,
there must exist a linear combination of the lines so that the matrices are reduced to banded
ones (see [18]).

We exhibit here the combination we used in each domain:

• In the kernel, the Chebyshev polynomials are either odd or even, depending on the
parity of l . The combination is independent of the actual value ofl except for its parity.

When the Chebyshev polynomials are even we use

L̄ i =
(
1+ δi

0

)
Li − Li+2 (for 0≤ i ≤ N − 3) (14)

L̃ i = L̄ i − L̄ i+2 (for 0≤ i ≤ N − 5) (15)

L̇ i = L̃ i − L̃ i+1 (for 0≤ i ≤ N − 5) (16)

and when they are odd we use

L̄ i = Li − Li+2 (for 0≤ i ≤ N − 3) (17)

L̃ i = L̄ i − L̄ i+2 (for 0≤ i ≤ N − 5) (18)

L̇ i = L̃ i − L̃ i+1 (for 0≤ i ≤ N − 5), (19)

whereLi denotes the line numberi andN is the number of Chebyshev polynomials involved
in the expansion. In both cases the resulting matrix is a 4-band one.
• In the shells, the basis of decomposition contains all the Chebyshev polynomials. The

combination is

L̄ i =
(
1+ δi

0

)
Li − Li+2

i + 1
(for 0≤ i ≤ N − 3) (20)

L̇ i = L̄ i − L̄ i+2 (for 0≤ i ≤ N − 5). (21)
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The resulting matrix is a 5-band one.
• In the external domain, the combination depends on the type of constructed operator.

—If the source is multiplied byr 4 the combination is

L̄ i =
(
1+ δi

0

)
Li − Li+2 (for 0≤ i ≤ N − 3) (22)

L̃ i = L̄ i − L̄ i+2 (for 0≤ i ≤ N − 5) (23)

L ′i = L̃ i − L̃ i+1 (for 0≤ i ≤ N − 5) (24)

L̇ i = L ′i − L ′i+2 (for 0≤ i ≤ N − 5). (25)

The resulting matrix is a 4-band one.
—If the source is multiplied byr 3 the combination is

L̄ i =
(
1+ δi

0

)
Li − Li+2 (for 0≤ i ≤ N − 3) (26)

L̃ i = L̄ i − L̄ i+2 (for 0≤ i ≤ N − 5) (27)

L̇ i = L̃ i + L̃ i+1 (for 0≤ i ≤ N − 5). (28)

The resulting matrix is a 4-band one.
—If the source is only multiplied byr 2, the combination is the same as the one used

in the kernel for even polynomials. Thus, the resulting matrix is a 6-band one.

Of course to maintain the solution, the same linear combination is performed on the
coefficients ofs.

The banded matrix associated with the one presented above (in the kernel withl = 2 and
N = 9) is

0 0 56 −336 −200 0 0 0 0
0 0 56 96 −488 336 0 0 0
0 0 0 144 168 −672 −504 0 0
0 0 0 0 264 272 −888 −704 0
0 0 0 0 0 416 408 −1136 −2000
0 0 0 0 0 0 600 1392 1488
0 0 0 0 0 0 0 816 1840
0 0 0 0 0 0 0 0 1064
0 0 0 0 0 0 0 0 0


.

2.4. Homogeneous Solutions

Due to the presence of homogeneous solutions, the banded matrices are not invertible.
The operator given by Eq. (7) has two homogeneous solutions which arer l andr−(l+1).
Those functions are eigenvectors of the matrix with the eigenvalue 0. In the kernel and the
external domain, the use of the finite part of the solution can sometimes introduce other
homogeneous solutions.

Let us summarize the number of such eigenvectors in each case:

• In the kernel the solution inr−(l+1) is singular forr = 0 and so is not taken into account.
We have one additional homogeneous solution, arising from the finite part:T0 for l even
andT1 for l odd.
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The parity of the Chebyshev polynomials is the same as that ofl so the eigen-vectors are:

—T0 only for l = 0.
—T1 only for l = 1.
—r l andT0 for l ≥ 2, even.
—r l andT1 for l ≥ 3, odd.

• In the shells we have to take into account the two usual homogeneous solutions, which
are not singular in this case. We could remark that ifr l is exactly described by the Chebyshev
expansion, and so implies an exact zero determinant for the matrix, it is not the case for the
fractional solutionr−(l+1). This one is not given by a finite sum of Chebyshev polynomials
but rather by an infinite sum implying the result would be worse and worse as the number
of coefficients increases, because the determinant of the matrix would be closer and closer
to 0. So, to deal with this, we have to take into account that the eigenvalue 0 is of order 2
even ifr−(l+1) only becomes an exact eigenvector for an infinite number of coefficients.
• In the external domain, the solutionr l is singular at infinity except forl = 0. r−(l+1)

is always acceptable.

If the source is multiplied byr 4, the finite part introduces two other eigenvectors of
eigenvalue 0 :T0 andT1. So the situation is:

—T0 andT1 for l = 0.
—T0, T1 andr−(l+1) for l ≥ 1.

If the source is multiplied byr 3, the finite part only introduces one other eigenvector of
eigenvalue 0:T0, and the situation is:

—T0 andr−(l+1) for all l.

If the source is multiplied byr 2, there are no other solutions other than the usual ones
which give:

—T0 andT1 for l = 0.
—r−(l+1) for l ≥ 1.

From the above discussion we are able to determine the orderp of the eigenvalue 0. The
banded matrices are then amputated from theirpfirst columns and theirp last lines resulting
in invertible banded matrices. We abandon thep last coefficients of the source. Doing so,
we find a particular solution of the system which has itsp first coefficients undefined and
thereafter set to zero.

In particular the previously presented matrix (in the kernel, forl = 2 andN = 9) becomes

56 −336 −200 0 0 0 0
56 96 −488 336 0 0 0
0 144 168 −672 −504 0 0
0 0 264 272 −888 −704 0
0 0 0 416 408 −1136 −2000
0 0 0 0 600 1392 1488
0 0 0 0 0 816 1840


.

Before solving the system, anLU decomposition is performed using Linear Algebra
Package (LAPACK) [19] for purpose of rapidity. LAPACK is also used for the resolution
of the system.



SPECTRAL METHOD FOR POISSON EQUATIONS 239

2.5. Regularity and Boundary Conditions

In this section we will show how some homogeneous solutions are used to maintain reg-
ularity and satisfy the boundary conditions. We will concentrate on the boundary condition
f = 0 at infinity.

• In the kernel, the operator is singular only forl ≥ 2. If it is the case, to maintain
regularity,f has to verify the following conditions:

f (0) = 0 (29)

f ′(0) = 0. (30)

Thanks to the parity of the Chebyshev expansion, one of these conditions is always fulfilled,
depending on the parity ofl. So we perform a linear combination of the solution with either
T0 or T1 to fulfill the other one. Nothing has to be done forl ≤ 1.
• In the shells, nothing has to be done for there are neither boundary conditions nor

singularities.
• In the external domain we should, once more, discriminate between three cases:

—If the source is multiplied byr 4, we must imposef (1) = 0 to satisfy the boundary
condition; this is done by performing a linear combination of the solution andT0. Then for
l ≥ 1, for reasons of regularity, we must havef ′(1) = 0, a condition which is obtained by
linear combination withT1.

—In the case of a source multiplied byr 3, the boundary conditionf (1) = 0 ensures
regularity; we impose it by performing a linear combination of the solution andT0.

—If the source is multiplied byr 2, the situation is a bit more subtle. There is no condition
of regularity, but the boundary condition imposes thatf (1) = 0. Then one can show that
this implies that the source decreases asr−3 at infinity. Conversely, if the source decreases as
r−3, it implies, forl 6= 0, that f (1) = 0. So to verify boundary conditions we only consider
sources decreasing asr−3. It implies that the boundary condition is automatically verified
for l 6= 0. We only impose it forl = 0, by doing a linear combination of the solution andT0.

Let us emphasize that this is only the theoretical aspect of the problem. During an actual
physical calculation, the sources of the Poisson equation are themselves numerically given
so that they might not decrease, due to computational errors, exactly liker−3. In such a
case one should be cautious, for the solution will not exactly be zero at infinity. A possible
treatment is to enforce ther−3 decay by slightly modifying the source prior to the resolution
of the Poisson equation.

2.6. Continuity

At this stage, for each (l, m), we are left with a particular solution in each domain, one
homogeneous solution in the kernel and in the external domain, and two in each shell. The
last linear combination will be performed to ensure the continuity of the solution and of its
first derivative across each boundary.

The simplest case is when the angular sampling is the same in every domain (i.e., the
same numbers of point inθ andφ). The unknowns are the coefficients of the homogeneous
solutions in the physical solution and the equations are given by matchingf and its derivative
across each boundary. It is easy to see that there is exactly the same number of equations
and of unknown quantities, resulting in a uniquely determined solution.
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If the angular sampling is not the same, the situation is a bit more complex; because some
Ym

l may not be present in some domains. At each boundary, for each (l, m), three situations
can occur:

• the harmonic is present in the two domains: we perform the matching of bothf and its
derivative.
• the harmonic is present in neither domains: no equation is written.
• the harmonic is present only in one domain: we assure the continuity off supposing

that the harmonic has its coefficient equal to 0 in the domain where it is not present. We
perform no matching for its derivative.

This procedure results in a system of equations that admit a unique set of solutions. We
have imposed exactly as much continuity as the sampling allowed us.

To illustrate this, let us take the situation given by Table I for a specific value (l,m). In this
situtation the domain 0 is the kernel and the domain 4 is the external compactified region.
The column labeledYm

l denotes the presence or the absence of the considered spherical
harmonic in each domain. The particular and homogeneous solutions are expressed taking
into account the sampling and the nature of each domain. The unknowns are the coefficients
of the homogeneous solutions labeledα for r l and β for r−(l+1). Using the procedure
described above we obtain the following equations:

• Forr = R1, the spherical harmonic is present in both domains, so we have to write the
continuity of the solution and its derivative, which gives

f0(R1)+ α0Rl
1 = f1(R1)+ α1Rl

1+ β1R−(l+1)
1 (31)

f ′0(R1)+ lα0R(l−1)
1 = f ′1(R1)+ lα1R(l−1)

1 − (l + 1)β1R−(l+2)
1 . (32)

• For r = R2, the spherical harmonic is present only in the domain 1 and so we write
only the continuity of the solution assuming that it is zero in the domain 2

f1(R2)+ α1Rl
2+ β1R−(l+1)

2 = 0. (33)

• For r = R3, no equation is written, for the harmonic is absent on both sides of the
boundary.
• For r = R4, the situation is the same as atr = R2

f4(R4)+ β4R−(l+1)
4 = 0. (34)

TABLE I

Example of the Situation before Making the Connection across Each Boundary

Particular Homogeneous
Domain Bounds Ym

l solutions solution Unknowns

0 0≤ r ≤ R1 Yes f0 r l α0

1 R1 ≤ r ≤ R2 Yes f1 r l andr −(l+1) α1 andβ1

2 R2 ≤ r ≤ R3 No
3 R3 ≤ r ≤ R4 No
4 R4 ≤ r ≤ ∞ Yes f4 r −(l+1) β4
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We have now four independent equations which are solved to find the unknownsα0, α1,
β1, andβ4.

All this procedure enables us to find a unique solution of the scalar Poisson equation,
solution to be regular everywhere, continuous, like its derivative, and that is zero at infinity.
We should point out, once more, that the source must decrease at least asr−3 for this to be
possible.

3. CONVERGENCE PROPERTIES OF THE SCALAR POISSON EQUATION SOLVER

3.1. Position of the Problem

We now study the convergence of our algorithm, depending on the number of coefficients
chosen for ther-expansion. The number of points forθ andφ does not change the precision
of the result, as long as we have enough points, that is, enough spherical harmonics, to
describe the source properly. However, concerningr, we perform matrix inversion and we
expect a better precision as the number of coefficients increases.

It is well known (see [8, 9]) that with spectral method, the error is evanescent, i.e.,
decreasing as exp(−N), N being the number of coefficients, as long as we are working
with functions that areC∞. If the functions are onlyC p, the error is decreasing asN−(p+1)

solely. This is known as the Gibbs phenomenon.
The various domains of our multidomain method [13] are intended to fit the surfaces of

discontinuity, for example, the surface of a star (see [20] for an application to stars with
discontinuous density profiles, like strange stars). Doing so, each function isC∞ in each
domain, removing any Gibbs phenomenon.

To test the validity of our numerical scheme, we compare calculated solutions to analytical
ones. We estimate the relative error as the infinite norm of the difference over the infinite
norm of the analytical solution. We will present some examples for the construction of
analytical solutions. Using onlyC∞ functions we expect errors to be evanescent.

But this is not so simple. It can be easily shown that, generally, the particular solutions
obtained by the inversion of the operator for each (l, m) are of polynomial or fractional
type. Those functions are exactly described by Chebyshev polynomials inr or r−1. This is
true except in two cases, related to the homogeneous solutions:

• a source inr l−2 will give rise to a particular solution inr l ln r .
• a source inr−(l+3) will be associated with a particular solution inr−(l+1) ln r .

In such cases, we expect some problems, for the description of logarithm functions in
terms of Chebyshev polynomials may not be accurate. To be more precise about this effect,
let us study the situation in each type of domain.

3.1.1. In the kernel. In the kernel and for reason of regularity, sources inr−(l+3) are
obviously never present. At first glance, the case of a source inr l−2 seems to be more
problematic, but let us recall that this source has to be the factor ofYm

l . Can we have a
source containing terms likeYm

l r l−2? To answer this question we refer to [10] where it
is shown that, for a regular function (i.e., a function, expandable as a polynomial series
in Cartesian coordinates (x, y, z) associated with(r, θ, φ)), terms liker αYm

l are present
in the spectral expansion only ifα ≥ l . So, sources leading to a ln function in the kernel
are not regular at the origin. To conclude, we expect no problem connected with particular
solutions containing logarithm functions in the kernel, at least with physical regular sources.
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However, let us mention the fact that if the source is the result of some calculation, it might
contain some nonphysical terms due to computational errors. Those terms might give rise
to some logarithmic functions.

3.1.2. In the shells. As usual there are no regularity prescriptions in the shells. The two
types of particular solutions can appear. To investigate more precisely the effects of the
logarithm, we studied the behavior of the error performed by expanding the two types of
particular solutions in Chebyshev polynomials.

We constructed the two following exact particular solutionsr l ln r andr−(l+1) ln r and
approached them by a sum of Chebyshev polynomials inx, the relation betweenr andx
beingr = αx + β. Then, we estimated the error by the same method as the one described
previously.

Figure 1 shows an evanescent error. The functions containing logarithm are thus rather
well described in a shell. This is due to the fact that the ln functions are bounded in such
domains and not going to infinite values. More precisely, ther l ln r andr−(l+1) ln r functions
areC∞ in the shells so that the error should be evanescent. Let us mention that this result
does not depend on the choice made forα andβ. To conclude we expect no problem to rise
from the presence of such particular solutions in the shells.

3.1.3. In the external compactified domain.The particular solution inr l ln r is not
going to zero at infinity and so cannot appear in the external domain. But the other type
of particular solutionr−(l+1) ln r is likely to appear. We investigate the effect by the same
method as the one used in the shells, that is, determining the behavior of the error made by
interpolating the exact solution by a finite sum of Chebyshev polynomials.

Figure 2 shows that the error is no longer evanescent but follows a power law. The error is
decreasing faster and faster asl increases, because the associated particular solution is being

FIG. 1. Relative difference (infinite norm) between the particular solutions with logarithm and their truncated
Chebyshev expansions, in a shell. The scale for the number of coefficients is linear. The solid lines represent the
r l ln r functions and the dashed lines ther −(l+1) ln r ones. The circles represent the casel = 0, the squaresl = 1,
and the diamondsl = 2. This plot has been obtained usingα = 0.5 andβ = 1.5.



SPECTRAL METHOD FOR POISSON EQUATIONS 243

FIG. 2. Relative difference (infinite norm) between the particular solutions with logarithm and their truncated
Chebyshev expansions, in the external domain. The scale for the number of coefficients is logarithmic. The circle
represent the casel = 0, the squaresl = 1, and the diamondsl = 2.

better approached by Chebyshev polynomials. In other words, the functionr−(l+1) ln r =
−u(l+1) ln u is notC∞, for its (l + 1) derivative contains terms in1u , not regular at spatial
infinity, that is for u = 0. More precisely, Fig. 3 shows the value of the exponent as a
function of l.

We can conclude that the error made by expandingr−(l+1) ln r Chebyshev polynomials
follows a power law and that it is decreasing faster thanN−2(l+1). We will use this to explain
some features of our scalar and vectorial Poisson equation solvers.

FIG. 3. Exponent of the power law followed by the error shown in Fig. 2, as a function ofl .
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3.2. Accuracy Estimated by Comparison with Analytical Solutions

From the results of the previous section, we expect an evanescent error for the resolution
of the scalar Poisson equation when there is no particular solution containing any logarithm
in the external domain and an error follows a power law when such solution do appear. We
present here some results that illustrate this behavior and lead to two properties about the
error.

3.2.1. Spherically symmetric source.First of all, let us consider a simple case for which
we do not expect any Gibbs-like phenomenon: a spherically symmetric source decreasing
asr−4. In fact, the only harmonic present in this source isl = 0, which would imply a ln
solution only for a source inr−3. We choose a sourceSdecreasing asr−4 in the external
domain and a polynomial one, such that the solution is not singular in the kernel. The
associated solutionF can be found analytically.

In the external domain, forr > R, we have

S= R5

r 4
; F = R5

2r 2
− 17

15

R4

r
, (35)

and forr < R,

S= R− r 2

R
; F = Rr2

6
− r 4

20R
− 3

4
R3. (36)

As expected Fig. 4 shows an evanescent error, with some saturation at the level of 10−15

due to the round-off error, the calculation being performed in double precision. No signifi-
cant difference can be seen between the three schemes.

FIG. 4. Error on the resolution of the scalar Poisson equation for a spherically symmetric source extending
to infinity. The solid lines represent ther 4Sscheme, the dotted lines ther 3Sscheme, and the dashed lines ther 2S
one. The scale for the number of coefficients is linear. The circles represent the error in the kernel, the squares in
the shell, and the diamonds in the external domain.
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3.2.2. Compact source.Another interesting case is that of a source with a compact
support, that is, a source which is zero in the external domain. As for the previous case we
do not expect any Gibbs phenomenon. In the external domain let us choose the following
analytical solution

F = Y0
l

1

r l+1
. (37)

This solution leads to a source that vanishes in the external domain. To avoid any singularity
at the center, we choose the latter function as a solution of the equation forr < R

F = Y0
l

[
(2l + 5)

r 2

2R2l+3
− (2l + 3)

r 4

2R2l+5

]
. (38)

This solution has been chosen so thatF and its first derivative with respect tor are
continuous atr = R, properties of the solution given by our algorithm. The associated
source, forr < R, is found by taking the Laplacian ofF

S= Y0
l

[
(2l + 5)(2l + 3)

1

R2l+3
− (2l + 3)(4l + 10)

r 2

R2l+5

]
. (39)

So we constructed a nonspherically symmetric compact source, which contains only one
spherical harmonic. We chose for simplicitym= 0, because we do not expect any variation
with m, the latter than being absent of the inverted operator.

As expected, Fig. 5 shows an evanescent error down to a saturation value of approxima-
tively 10−14.

FIG. 5. Error on the resolution of the Poisson-like equation for a nonspherical compact source withl = 2.
The scale for the number of coefficients is linear. The circles represent the error in the kernel, the squares in the
shell, and the diamonds in the external domain.



246 GRANDCLÉMENT ET AL.

3.2.3. A logarithm in a shell. The last case with an evanescent error we considered is the
one where the problematic particular solutions (i.e., containing a logarithm) appear only in
a shell bounded byR1 < r < R2. We choose a sources that implies the appearance of both
types of particular solutions. LetF be the associated solution. In the shell, forR1 < r < R2,
we have

Sshell= 1

r 3
+ 3

z2

r 2
− 1

Fshell=− ln r

r
+ ln R1− 1

r
+ 1

R2
+
(

3
z2

r 2
− 1

)(
1

5
r 2 ln r −

(
ln R2

5
+ 1

25

)
r 2+ R5

1

25

1

r 3

)
(40)

For simplicity, we takeS= 0 in the kernel and in the external domain, the solution being
chosen, once more, by continuity across the boundaries

Fkernel= 1

R2
− 1

R1
+ ln R1− ln R2

5
r 2

(
3

z2

r 2
− 1

)
(41)

Fexternal= ln R1− ln R2

r
+ 1

r3

R5
1 − R5

2

25

(
3

z2

r 2
− 1

)
.

The result presented in Fig. 6 shows an evanescent error, confirming that the presence of
a logarithm function is only a problem in the external domain. Once more let us mention
that this is due to the fact that the logarithm functions are bounded in a shell and not going
to infinite values. Such bounded functions are rather well described in terms of Chebyshev
polynomials.

FIG. 6. Error on the resolution of the scalar Poisson equation for a solution containing bounded logarithm
functions. The scale for the number of coefficients is linear. The circles represent the error in the kernel, the squares
in the shell, and the diamonds in the external domain.
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3.2.4. The Gibbs phenomenon.Let us now consider a case where the particular solution
contains a logarithm in the external domain. Following the construction of the source and
solution in Section 3.2.2 let us take the following source in the external domain.

S= −Y0
l

1

r l+3
, (42)

andS= 0 for r < R. The associated unique solution is

F = Y0
l

r l

(2l + 1)2R2l+1
for r < R

(43)

F = Y0
l

ln(r )− ln(R)+ 1
2l+1

(2l + 1)r l+1
for r > R.

Figure 7 presents an example of the obtained results for each of the three schemes
discussed in Section 2.2. A logarithm being present in the solution, the error is no longer
evanescent and it follows a power law. One important feature is that ther 4S scheme is
converging much less rapidly than ther 3Sandr 2Sones. This may be due to the fact that for
a given source, ther 4Sscheme is dealing with particular solutions less rapidly decreasing.

In Fig. 8 the slope of the power law is plotted as a function of the harmonic indexl,
for the three different schemes. It reveals an error decreasing asN−2(l+1) for the r 2S and
r 3S schemes and asN−2l for the r 4S one. Let us mention that ther 2S scheme yields an
error following the same power law as the one rising from the description of the associated
function (cf. Section 3.1.3), making us confident about the origin of such a behavior.

FIG. 7. Error on the resolution of the scalar Poisson equation for a solution containing ln functions forl = 2.
The scale for the number of coefficients is logarithmic. The circles represent the error in the kernel, the squares in
the shell, and the diamonds in the external domain. Solid lines represent the scheme withr 4S, the dotted ones the
scheme withr 3S, and dashed lines the scheme withr 2S.
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FIG. 8. Exponent of the power law followed by the error shown in Fig. 7 as a function of the indexl. The solid
lines correspond to ther 4S scheme, the dotted lines to ther 3S scheme, and the dashed lines to ther 2S scheme.
The circles represent the error in the kernel, the squares in the shell, and the diamonds in the external domain.

3.3. Convergence Properties

All the examples shown in the previous section enable us to propose the two following
empirical properties concerning the decrease of the error.

Property 1. If the source is decreasing asr−k at infinity and does not contain any
spherical harmonics withl ≥ k− 3, then the error is evanescent.

Property 2. If the source decrease at least asr−k at infinity, then the error decreases at
least asN−2(k−2) (resp.N−2k) for ther 2Sandr 3Sschemes (respr 4Sscheme).

The first property is just issued from the presence of a ln function in the external domain
and the second property comes from the values of the power law found in the previous
section.

4. VECTORIAL POISSON EQUATION

Using the Poisson equation solver from Section 2 and studied in Section 3, we focus
now on the vectorial Poisson equation given by Eq. (2), in the nondegenerated case (i.e.,
λ 6= −1).

Let us first mention that the operator1+ λ E∇( E∇·) has been shown to be strongly elliptic
and self-adjoint in [5, 6] in the caseλ = 1/3 (conformal Laplace operator). Conditions
for existence and uniqueness of solutions have been presented in Appendix B of [4]. The
harmonic vectorial functions of this operator and the associated multipole expansions have
been discussed býO Murchadha [21].

Three different schemes have been previously proposed by other authors [14–16] to
reduce the resolution of Eq. (2) to those of four scalar Poisson equations. Let us emphasize
that those three schemes are not covariant. They are only applicable in Cartesian coordinates
which allow us to commute operators like Laplacian and gradient.
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Let us mention the fact that a different method, based on solving for the degenerated case
(i.e.,λ = 1) has been proposed in [10] but is not studied in the present work.

4.1. The Bowen–York Method

The idea of this method (see [14]) is to search for the solution of Eq. (2) in the form

EN = EW + E∇χ, (44)

where EW andχ are solutions of

1 EW = ES (45)

1χ = − λ

λ+ 1
E∇ · EW. (46)

This method gives a solution to Eq. (2) but let us check that this solution is the one that
is C1. EW is C1, being a solution of a Poisson equation. This implies that the source of the
equation forχ is continuous, and thatχ is C2. This is sufficient to ensure thatEN is C1. The
scheme finds the only solutionC1 and one going to zero at infinity.

Unfortunately this very simple method is not applicable with our Poisson equation solver,
because the physical sources are not decreasing fast enough at infinity. For the problem that
motivated this study, namely binary neutron star systems [22, 23], the sourceESof Eq. (2) is
expected to behave liker−4 at infinity implying that we can calculateEW. This vector field
is acting liker−1 at infinity, becauser−1 is a homogeneous solution of the scalar Poisson
equation usually present (monopolar term).

So the source of the equation forχ , being the divergence ofEW, behaves liker−2. This
decreasing is not fast enough to compute the value ofχ . Analytically no problem occurs
because only the gradient ofχ is relevant, notχ itself, for the calculation of the solution.
To summarize, the implementation of this scheme conducts to the computation of diverging
quantities, making the result wrong in the external domain. We should say that this scheme
is applicable for domains not extending to infinity. However, it may be possible to use it by
treating analytically the diverging quantities.

4.2. The Oohara–Nakamura Method

In this case (see Section 3.1.1 of [15]) we start by solving the following scalar equation

1χ = 1

λ+ 1
E∇ · ES. (47)

Then the solution of Eq. (2) is found by solving the following set of three equations

1 EN = ES− λ E∇χ. (48)

Comparing (2) with (48) shows that this scheme gives the exact solution of Eq. (2) if and
only if

E∇χ = E∇( E∇ · EN). (49)



250 GRANDCLÉMENT ET AL.

But the scalar equation (47) only ensures that

1(χ − E∇ · EN) = 0. (50)

From Section 2, we can show that it is possible to construct a homogeneous solution of
the scalar Poisson equation, in all spaces that is nonzero, going to zero at infinity, if and
only if that solution is notC1.

In the general case,E∇ · EN is onlyC0 at the boundary between the different domains, while
χ , solution of a Poisson equation, isC1. So it is possible to fulfill Eq. (50) and not Eq. (49).
If E∇ · EN is C1, then Eq. (50) implies, as shown in Section 2, thatχ = E∇ · EN. In this case,
the condition (49) is trivially fulfilled. Imposing thatE∇ · EN is at leastC1 is equivalent to
imposing thatES is continuous across every boundary.

To conclude, let us say that the Oohara–Nakamura method gives the exact solution if and
only if the sourceES is continuous across every boundary delimiting the different domains.
This property is general, meaning that it is not due to our numerical method. We can
mention that the found solution is theC1 one, because it is calculated as solution of three
scalar Poisson equations.

Next let us see if this scheme is applicable, using our scalar Poisson equation solver. At
first glance this scheme suffers the same drawback as the Bowen–York scheme. Because
of homogeneous solutions of the scalar Poisson equation,χ is decreasing asr−1 at infinity
and its gradient asr−2, which is not enough to allow us to solve the set (48) of three scalar
Poisson equations.

The difference is that the solution of Eq. (48) is the solution of the vectorial Poisson
equation (2) and we must be able to set it to zero at infinity, contrary to the Bowen–York
method where the problem occurs for auxiliary quantities.

So it must be possible to show that the source of Eq. (48) decreases fast enough, that is, at
least asr−3. The problem arises from the monopolar term ofχ , i.e., the only one that gives
an homogeneous solution inr−1 in the external domain. It is known, that the monopolar
term M0 of the solution of a scalar Poisson equation with sourceσ , is given by

M0 = 1

4π

∫∫∫
σd3r, (51)

the integration being performed over all spaces.
Now we haveσ = E∇ · ES. The use of Green formula leads to

M0 = 1

4π

∫∫
ES · dEs, (52)

the surface integration being done at infinity. ButES decreases asr−4, implying that the
surface integral is zero, that is,M0 = 0. This remains true if the source acts only liker−3.

So the monopolar term ofχ is zero, which implies thatχ decreases at least asr−2. This
behavior ensures that the source of Eq. (48) decreases asr−3, allowing us to find the unique
solution going to zero at infinity.

We implemented and tested this scheme, recalling that it is only applicable if the source
of Eq. (2) is continuous and requires that the source decreases at least liker−3 at infinity.
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4.3. The Shibata Method

The solution is now found as (see [16])

EN = 1

2

λ+ 2

λ+ 1
EW − 1

2

λ

λ+ 1
( E∇χ + E∇ EW · Er ), (53)

where EW andχ are solutions of

1 EW = ES (54)

1χ = −Er · ES. (55)

andEr denotes the vector of coordinates (x, y, z).
This scheme gives a solution to Eq. (2), but, as with the Bowen–York method, let us

quickly check that it is the uniqueC1 going to zero at infinity. At infinity,EW, a solution of
scalar Poisson equation, is behaving at least liker−1. This ensures thatE∇ EW · Er is zero at
infinity, proving that the solution goes to zero.

Concerning the continuity, being solutions of scalar Poisson equations, we know that
both EW andχ are at leastC1. But we have to take care of the termE∇χ + E∇ EW · Er of Eq. (53).
First we can show that

1(Er · EW) = Er · ES+ 2E∇ · EW. (56)

Using that property and the equation forχ we can see that

1(Er · EW + χ) = 2E∇ · EW. (57)

The source of that equation isC0, so thatEr · EW + χ is C2. The term of Eq. (53), can be
expressed as

E∇χ + E∇ EW · Er = ∇(Er · EW + χ)− EW. (58)

Using the continuity properties found above, it is easy to see that the right-hand side of
Eq. (58) isC1, which ends our demonstration by proving that the calculatedEN is C1.

As before, let us now check if this method is applicable by means of our scalar Poisson
equation solver. The source of the equation forχ decreases at least liker−3 at infinity if
and only ifESdecreases liker−4. Like the Oohara–Nakamura scheme, this scheme does not
involve any diverging quantities and so is suitable for numerical purposes.

This method has been implemented and, contrary to the Oohara–Nakamura method, can
be used even with discontinuous source, but requires thatES decreases at least liker−4 at
infinity, which, let us recall, is the case for the physical problems we intend to study.

4.4. Convergence Criterion

As seen before the resolution of Eq. (2) reduces to that of four scalar Poisson equations.
So we should be able to use the results of Section 3.3 to establish a convergence criterion
for the schemes proposed in [15, 16].
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4.4.1. The Oohara–Nakamura scheme.Let us suppose that the sourceES of Eq. (2)
contains only one spherical harmonicYm

l and decreases asr−k at infinity (k ≥ 3).
For the Oohara–Nakamura method, the source of the first Poisson equation isE∇ · ES: the

degree of the harmonic isl + 1 and the decrease is asr−(k+1). These two effects are opposed
concerning the convergence properties established in Section 3.3. So, in the case where no
logarithm appears during the calculation to findχ, χ contains one spherical harmonicl + 1
and decreases asr−(k−1) and soE∇χ , part of the source of Eq. (48), contains one spherical
harmonic withl + 2 and acting liker−k at infinity. So the conditions for the appearance of
a Gibbs-like phenomenon are “harder” by two degrees than for a scalar Poisson equation
and occurs for a source with a spherical indexl + 2.

4.4.2. The Shibata scheme.Suppose we consider the same source as in the previous
section. The convergence properties for the equation forEW are the same as those for a usual
scalar Poisson equation.

Concerning the equation forχ the source is−Er · ES. Performing such an operation onES
increases the degree of the spherical harmonics by one unit. At the same time, the decrease
of the source is slower, due to multiplication byr everywhere. Those two phenomena have
the same effect on the convergence criterion we previously established. As for the Oohara–
Nakamura scheme, the criteria are “harder” by two degrees but the Gibbs-like phenomenon
occurs for a source inl + 1.

4.4.3. Convergence properties.We are now able to deduce convergence properties for
the two schemes. From the study above, we can see that if the condition for the appearance
of the Gibbs-like phenomenon is the same, it is not associated with the same indexl. This
results in the two following properties:

Property 1. If the source of a vectorial Poisson equation is decreasing asr−k at infinity
(k ≥ 3 for the Oohara–Nakamura scheme andk ≥ 4 for the Shibata scheme) and does not
contain any spherical harmonics withl ≥ k− 5, then the error is evanescent.

Property 2. If the source decreases at least asr−k at infinity then the error is decreasing
at least asN−2(k−2) for the Oohara–Nakamura method (k ≥ 3) and at least asN−2(k−3) for
the Shibata method (k ≥ 4).

5. ACCURACY OF THE VECTORIAL POISSON EQUATION SOLVERS ESTIMATED

BY COMPARISON WITH ANALYTICAL SOLUTIONS

To check the validity of the schemes and their convergence, we used the same method as
that used for the scalar Poisson equation, that is, the use of analytical solutions of various
properties. The solutions associated with the sources have been obtained by following
analytically the Shibata scheme.

5.1. Continuous Source

Let us consider the case of a continuous source extending to infinity, say, for example, in
the external compactified domain, forr > R

Sx = x

r n+5
; Sy = y

r n+5
; Sz = z

r n+5
(59)
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and forr < R

Sx = x

Rn+5
; Sy = y

Rn+5
; Sz = z

Rn+5
. (60)

Note that this source isC0, the minimum requirement for the Oohara–Nakamura method to
be applicable.

For n 6= 0, the associated solution in the external domain is

Nx = 1

(λ+ 1)n(n+ 3)

x

r n+3
− n+ 5

(λ+ 1)15n

x

Rnr 3
(61)

and forr < R

Nx = 1

10(λ+ 1)

xr2

Rn+5
− n+ 5

(λ+ 1)6(n+ 3)

x

Rn+3
. (62)

the other components being obtained by permutation ofx, y andz.
Forn 6= 0 no Gibbs-like phenomenon occurs by solving the equations withESas source.

For n ≤ 2, a Gibbs-like phenomenon should appear due to the vectorial nature of Eq. (2).
This is not the case because of simplifications due to the symmetry of the source. It just
shows that the two convergence criteria established above are rather pessimistic. The evanes-
cent error is shown in Fig. 9. As for the scalar case, a saturation is attained at a level of
approximately 10−11.

FIG. 9. Error on thezcomponent for a continuous source extending to infinity (Eqs. (59) and (60) withn = 1).
The scale for the number of coefficients is linear. The solid lines represent the Shibata scheme and the dashed
lines the Oohara–Nakamura scheme. The circles represent the error in the kernel, the squares in the shell, and the
diamonds in the external domain.
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5.2. A Vectorial Gibbs-like Phenomenon

At this point, we exhibit an analytical solution that produces a Gibbs-like phenomenon
which arises from the vectorial nature of Eq. (2). Let us consider the following source

Sz = z

r 7
(63)

in the external compactified domain, and forr < R

Sz = z

R7
. (64)

We set the two other components to zero in all spaces.
If we solve the scalar Poisson equation withSz as source, the error will be evanescent,

as shown in Section 3.3. But, according to the conclusion we obtained concerning the
convergence criterion of a vectorial Poisson equation, a Gibbs-like phenomenon should
appear due to the vectorial nature of Eq. (2).

In the external domain, the associated solution is

Nx = −1

2

λ

λ+ 1

[
z2x

r 7

(
− 9

14
+ ln(R)− ln(r )

)
+ 7

10

z2x

r 5R2

+ x

r 5

(
59

350
+ ln(r )− ln(R)

5

)
− 7

30

x

r 3R2

]
Ny = −1

2

λ

λ+ 1

[
z2y

r 7

(
− 9

14
+ ln(R)− ln(r )

)
+ 7

10

z2y

r 5R2

(65)

+ y

r 5

(
59

350
+ ln(r )− ln(R)

5

)
− 7

30

y

r 3R2

]
Nz = 1

2

λ+ 2

λ+ 1
z

(
1

10r 5
− 7

30

1

r 3R2

)
− 1

2

λ

λ+ 1

[
z3

r 7

(
− 9

14
+ ln(R)− ln(r )

)
+ 7

10

z3

R2r 5
+ z

r 5

(
3

5
(ln(r )− ln(R))+ 71

175

)
− 7

15

z

r 3R2

]
and forr < R, we found

Nx = −1

2

λ

λ+ 1
x

(
2

35

z2

R7
+ 1

35

r 2

R7
− 7

75

1

R5

)
Ny = −1

2

λ

λ+ 1
y

(
2

35

z2

R7
+ 1

35

r 2

R7
− 7

75

1

R5

)
(66)

Nz = 1

2

λ+ 2

λ+ 1
z

(
1

10

r 2

R7
− 7

30

1

R5

)
− 1

2

λ

λ+ 1
z

(
2

35

z2

R7
− 1

70

r 2

R7
− 7

150

1

R5

)
.

As expected, Fig. 10 shows an error obeying a power law. This feature is more evident
in the external domain where the particular solution is directly present. The Gibbs-like
phenomenon appears for the two schemes. Let us apply Property 2 to determine the exponent
of the power law. The source of the equation decreases asr−6. This implies that the error for
the Oohara–Nakamura scheme should decrese at least asN−8 and asN−6 for the Shibata
scheme. This is well confirmed for the Shibata scheme which exhibits an exponent –6.4.
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FIG. 10. Error on thezcomponent for a source implying a Gibbs-like phenomenon. The scale for the number
of coefficients is logarithmic. The solid lines represent the Shibata scheme and the dashed lines the Oohara–
Nakamura scheme. The circles represent the error in the kernel, the squares in the shell, and the diamonds in the
external domain.

For the Oohara scheme it turns out that the criterion is rather pessimistic because the error
decreases faster thanN−12.

5.3. A Discontinuous Source

As previously explained, the Oohara–Nakamura scheme fails to solve Eq. (2) in the case
of a discontinuous source. We will now consider such a source and show that the Shibata
method is efficient, even in such a case.

In the compactified domain,r > R, we choose the following solution

Nx = x

r n
. (67)

For r < R, we ensure the continuity of the solution and its derivative by choosing

Nx = x(ar6+ br4), (68)

wherea = − 4+n
2Rn+6 and b = 6+n

2Rn+4 . The associated source is obtained by calculating the
left-hand side of Eq. (2). In the external domain we obtain

Sx = n(n− 3− 3λ)
x

r n+2
+ n(n+ 2)λ

x3

r n+4

Sy = −λn
y

r n+2
+ n(n+ 2)λ

x2y

r n+4
(69)

Sz = −λn
z

r n+2
+ n(n+ 2)λ

x2z

r n+4
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FIG. 11. Error on thex component for discontinuous source (Eqs. (69) and (70) withn = 4). The scale for
the number of coefficients is linear. The circles represent the error in the kernel, the squares in the shell, and the
diamonds in the external domain.

and forr < R, we have

Sx = x[(54+ 18λ)ar4+ (28+ 12λ)br2] + λx3(24ar2+ 8b)

Sy = λy[6ar4+ 4br2+ x2(24ar2+ 8b)] (70)

Sz = λz[6ar4+ 4br2+ x2(24ar2+ 8b)].

Depending on the value ofn, the error may or may not be evanescent. Only a few
spherical harmonics are present in the source and we can show that we expect, for example,
an evanescent error forn = 4 and a Gibbs phenomenon forn = 5. This might seem not
to be in agreement with the convergence criterion previously established, but recall that
it is rather general and much more pessimistic to handle simple sources such as the ones
considered here.

The results presented in Figs. 11 and 12 show that the discontinuity of the source has
no effect on the resolution of the vectorial Poisson equation, as long as the Shibata scheme
is used. Forn = 5, the source is liker−6 at infinity and we expect an error decreasing
more rapidly thanN−6. Figure 12 shows an extremely good agreement with the prediction,
because the power law exhibits an exponent of –6.4.

6. DEVELOPMENTS

In this section we present some extension of this work that is solving more complicated
equations using the schemes presented here as milestones.

The first extension that has been conducted regards nonspherical domains, with spheroidal
shapes (i.e., they must have the same topology as a sphere). This is very useful for we can
define the boundary of each domain to match with surfaces of discontinuity, like stellar
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FIG. 12. The error is the same as in Fig. 11 but forn = 5; the scale for the number of coefficients is now
logarithmic.

surfaces, so that each field isC∞ in each domain preventing any Gibbs phenomenon. Thanks
to some mapping onto a sphere, solving the Poisson equations with such boundaries reduces
to the spherical case, with correction terms appearing in the source. The equation is then
solved by iteration. The method is described in detail in [13]. In that paper the calculation
of the Mac–Laurin and of the Roche ellipsoids have been compared with the analytical
solutions. The behavior of the error when one increases the number of coefficients happens
to be evanescent (see Figs. 5 and 6 of [13]). Those calculations being made in the Newtonian
case, all the sources are compactly supported. This shows that the nonsphericity does not
introduce any new Gibbs phenomenon with respect to the spherical case.

Concerning calculations in general relativity (i.e., with sources extending to infinity),
results have been obtained for rapidly rotating strange stars in [20] using nonspherical
domains. Convergence properties have not been fully explored, because there exists no ana-
lytical solution to compare with. Anyway, we can suppose that with the sources containing
almost every spherical harmonic, the convergence will no longer be evanescent but will
rather follow a power law.

Another important extension of this work deals with two bodies, for example, orbiting
binary neutron stars. This case has been successfully studied in [22, 23] by means of the
Poisson solvers presented here. The main difference with the cases we discussed in the
present paper is that the sources are no longer spheroidal but are concentrated on two
spheroidal domains being the two stars. An equation of type (1) is then split into two parts

1F1 = S1
(71)

1F2 = S2,

where the real source isS= S1+ S2. We use two sets of spherical coordinates, one centered
on each star and the splitting is done so thatS1 is mainly centered on the first star andS2
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FIG. 13. Relative error, estimated by means of the virial theorem, for a Newtonian irrotational binary star
calculation with respect to the number of Chebyshev coefficients.

on the other star (see [23] for details). The sourcesSi are then well described in spheroidal
topology and the total equation is well solved, the solution beingF = F1+ F2. We used
that method to compute Newtonian configurations and compare them with semianalytical
solutions. Figure 13 shows the error made with the same configuration as in Fig. 7 of [23]
for a coordinate separation of 100 km. This calculation being Newtonian, the sources are
compactly supported and the error seems to be evanescent, but we have to be cautious for
the number of coefficients of the expansion is not maintained fixed. Extensive convergence
properties have not been conducted but it seems that the splitting of the equation into two
parts does not introduce any new Gibbs phenomenon. As for the single body problem,
convergence of calculations with sources extending to infinity (i.e., in general relativity)
has not been studied but we expect a Gibbs phenomenon to occur, because the sources
contain almost every spherical harmonic.

To finish with the extension of this work let us mention the case of black holes. In that
case the equations are not solved in all space but only on the domain exterior to the holes’
horizons. This means that we have to remove the kernel from the computational domain. The
regularity condition at the origin is then replaced by a boundary condition on the boundary
of the innermost shell. We have been able to use that to impose a condition on the value of
the solution (Dirichlet problem) or on its first radial derivative (Neumann problem). This
extension has nothing to do with the compactified domain and we expect the convergence
properties to be the same as those exhibited in the present work. We are currently applying
this to compute realistic, physical binary black hole configurations.

7. CONCLUSION

We have presented a scalar Poisson equation solver based on a spectral method. It enables
us to solve the Poisson equation for a source extending to infinity and going to zero at least
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like r−3. Our multidomain approach enables us to deal with a source which isC∞ in
each domain. Nevertheless some Gibbs-like phenomena can appear due to the existence
of particular solutions which contain logarithm functions in the external domain. Such
functions are not well described in terms of Chebyshev polynomials, resulting in a Gibbs-
like phenomenon. We exhibited the conditions for the appearance of such an effect and
quantified it, leading to the conclusion that, for a source decaying asr−k (k ≥ 3), the
error of the numerical solution is evanescent if the source does not contain any spherical
harmonics with indexl ≥ k− 3. Otherwise, the error decreases at least asN−2(k−2), N
being the number of Chebyshev coefficients.

We used this scalar Poisson equation solver to solve the generalized vectorial Poisson
equation given by Eq. (2) for a source going to zero at least liker−4. Three different schemes
have been discussed. We showed than the one proposed by Bowen and York [14] is not
applicable to domains extending up to infinity, by means of our methods, because it gives
rise to diverging auxiliary quantities. The scheme proposed by Oohara and Nakamura [15] is
applicable as long as the source is continuous and has been successfully implemented. The
last scheme, proposed by Oohara, Nakamura, and Shibata [16], is applicable even for dis-
continuous sources and has been successfully implemented too. The convergence properties
of the two implemented schemes have been derived from the schemes of the scalar Poisson
equation solver and checked by comparison between calculated and analytical solutions.
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