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We present a spectral method for solving elliptic equations which arise in general
relativity, namely three-dimensional scalar Poisson equations, as well as generalized
vectorial Poisson equations of the typeN + AV(V - N) = Swith 1 # —1. The
source can extend in all the Euclidean spRégprovided it decays at least as®.

A multidomain approach is used, along with spherical coordinates ¢). In each
domain, Chebyshev polynomials (iror 1/r) and spherical harmonics (thand¢)
expansions are used. If the source decays %she error of the numerical solution
is shown to decrease at least l[ds?*~2 whereN is the number of Chebyshev
coefficients. The error is even evanescents; i.e., it decreases asMNxpif the
source does not contain any spherical harmonics of ihdek — 3 (scalar case) or
| > k — 5 (vectorial case). © 2001 Academic Press

Key Words:scalar and vectorial Poisson equations; spectral methods; Gibbs phe-
nomenon; general relativity.

1. INTRODUCTION

1.1. Scalar and Vectorial Poisson Equations with Noncompact Sources

The most common elliptic equations which occur in numerical relativity (for a rece
review see [1]) are the scalar Poisson equation

AF =S Q)
and the (generalized) vector Poisson equation

AN +AV(V-N) =S 2
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where is a constant different from 1, typicallyx = 1/3. Contrary to the Newtonian case,
where the source tert@ contains only the matter density, the sources of these equatio
have a noncompact support. Moreover, the Einstein equations being nonlinear, the sot
SandS depend (usually quadratically) on the solutidghand N. This means that Egs. (1)
and (2) must be solved by iteration.

More precisely, within the 3 1 formalism (also calle@auchy formulatiopof general
relativity (see [2] for areview), the 10 Einstein equations can be decomposed into a set o
second-order evolution equations and four constraint equations: a scalar one, the so-c
Hamiltonian constraintand a vectorial one, the so-calletbmentum constrair{see [3]
for an extensive discussion of the constraints equations). The PDE type (i.e., hyperb
parabolic, or elliptic) of these equations depends on the coordinates chosen to dest
the space—time manifold. Let us recall that within the 3 formalism, the space—time is
foliated in a family of space-like slices;, labeled by the time coordinateThe space-time
4-metric is then entirely described by the induced 3-mefyiof the hypersurfaces; along
with the extrinsic curvature tensé; of %;.

In this context, a typical example of Eq. (1) is the equation for the lapse function f
the choice of time coordinate corresponding toaximal slicingof space—timé(see, e.g.,
[4]). Another example is provided by York treatment of the initial-value problem of gener
relativity [5], according to which the Hamiltonian constraint equation results in an ellipti
equation of type (1) for the conformal factor of the spatial metficwith a termF~"in S.

Regarding the vector Poisson equation (2), it also appears in York formulation of t
initial-value problem for the vector which enters in the longitudinal part of the transvers
traceless decomposition of the extrinsic curvature teKsarindeed the momentum con-
straint determines the longitudinal partkf; according to the equatién

ViK' =8rJ', ©)

where V; is the covariant derivative associated with the 3-mefrjc J' is the matter
momentum density, and maximal slicing is assurﬂéb(: 0). More generally, the vector
Poisson equation (2) with = 1/3 occurs each time one has to perform the transverse
traceless decomposition of a symmetric tensor figlddefined on a Riemannian three-
manifold with metricy;; . Following [5, 6], this decomposition writes

T = T4 + (L) + éTy'l, (4)

whereT =y TH. T/ is the transverse-traceless pattY)!l the longitudinal trace-free
one, and; Ty'/ the trace part. The longitudinal part is expressible in terms of a v&¢tor
by means of the conformal Killing operator:

(L) = VYl £ viyl — éy”VkYk. (5)
Performing the decomposition reduces to the finding of the vector\_ﬁe@bnsidering the

1 This Poisson equation for the lapse function reduces to the usual Poisson equation for the gravitational pote
at the Newtonian limit.
2 Einstein convention of summation on repeated indices is used.
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divergence of Eq. (4)\? appears to be the solution of the equation
i, 1 j ij 1 ij ivi

where Rij is the Ricci tensor associated with the metric. This is a vectorial Poisson
equation of type (2) with. = % (involving the so-called conformal Lqplace operator). Let
us mention that, in the general case, it must be solved by iteratiori ipresent in the
source term.

Another example of the vectorial Poisson equation (2) is provided by the so-oahéd
mal distortion[4] choice of coordinates in the spatial hypersurfatesrhe unknown vector
N is in this case thehift vectorwhich defines the propagation of the spatial coordinate
x! from one sliceX; to the next on&, , 4. It is this vectorial Poisson equation, which is a
special form of Eq. (2) with. = % that originally motivated our study of this subject. Let us
mention that the conformal Killing operator and the associated vectorial Poisson equa
also appear in the “thin-sandwich” formulation, where the spatial geometry is given on t
close hypersurfaces (see [3, 7] for more details).

1.2. Treatment by Means of Spectral Methods

Solving elliptic equations is often considered as a CPU time consuming task. Spec
methods [8, 9] seems attractive in this respect because they provide accurate results
reasonable sampling, as compared with finite difference methods, for example. We r
the interested reader to [10, 11] for a review of the use of spectral methods in relativi
astrophysics. Let us simply mention here that our group has previously developed a spe
method, using Chebyshev polynomials and spherical harmonics to solve three-dimensi
scalar Poisson equations with a compact source [12]. However, as recalled above, the el
equations which arise from numerical relativity have noncompact sources. This mean
particular that infinity is the only location to impose exact boundary conditions (flat spac
time). In order to tackle this, we have introduced a multidomain approach [13] within whi
the last domain extends up to infinity, thanks to some compactification. This approach
another nice feature, for it is avoiding Gibbs phenomena: a physical discontinuity can
located at the boundary between two domains so that all the considered fields are sm
in each domain.

Inthis article, we extend the single-domain spectral method for the scalar Poisson eque
(1) presentedin[12]to the multidomain case, which enables in particular to treat noncomj
sources provided they decay at least adwhenr — oo. Based on this scalar Poisson
solver, we treat the generalized vectorial Poisson equation (2). We consider three diffe
schemes proposed in the literature to reduce the resolution of (2) to four scalar Pois
equations, namely the schemes of Bowen and York [14], Oohara and Nakamura [15],
Oohara, Nakamura, and Shibata [16]. These schemes have been originally implemente
finite (single) domains and with finite difference methods. We study here their applicabil
to infinite domains and spectral methods.

The solvers presented in this work deal with three-dimensional flat spaces Where
denotes the ordinary derivation. More general cases (i.e., Laplacian operator assoc
with a curved metric) can be solved by iteration. In all the following we will assume th:
there exists a unique solution of both the scalar and the vectorial equationiftatysparts,
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C* everywhere, and that is going to zero at infinity. For known results about the exister
and uniqueness of solution of partial derivative systems see, for example, [17].

This paper is organized as follows. In Section 2 we present the numerical scheme L
to solve the scalar Poisson equation with our multidomain spectral method. This sche
is tested in Section 3 using comparison with analytical solutions of various behavic
This study leads us to establish the convergence properties of the algorithm. Section
devoted to the study the three different schemes mentioned above to solve the vect
Poisson equation (2). As for the scalar Poisson equation, the implemented scheme:
tested in Section 5 and their convergence properties exhibited. In Section 6 we give s
indication about some extensions of this work that have been successfully conducte:
under investigation.

2. SCALAR POISSON EQUATION

2.1. Spectral Expansions

As described in previous articles [10, 12], spherical coordinates ¢) are used; the
fields are expanded in spherical harmon{%6, ¢) and a Chebyshev expansion is per-
formed with respect to the coordinate. Doing so the resolution of the scalar Poisso
equation is reduced to find, for each couplen) the solution of

d?f 2df 10+12

W"'FdT—Tf:S(r)a (7)

wheref ands are functions ofr solely, being respectively the coefficients 4¥ in the
solutionF and in the sourcé&.

f and s are expanded in Chebyshev polynomials (hereafter referred © & the
polynomial of ordeii) so that the inversion of the operator on the left-hand side of Eq. (:
is reduced to a matrix inversion.

As recalled above, the present work improves that presented in [12] for we are allow
a source that is not compactly supported. To take care of this, we will divide space in th
type of domains, following [13]

e Onekernel a sphere centered at the origin and being the only domain considerec
[12]. In such a domaim is given byr = ax, wherex < [0, 1], with « > 0. The functions
are expanded in Chebyshev polynomialxiwith a definite parity to ensure regularity at
the origin: only even (resp. odd) polynomials are involved feven (resp. odd).

e Anarbitrary number, including zero, sfiellsdomainswhere = ax + 8, x € [—1, 1].
We have the following conditionsx. > 0 andg > «, so thar is increasing wittxand never
equal to zero. In the shells, the functions are expanded in usual Chebyshev polynom
with no parity requirement.

e One external domain, extending to infinity, wheis givenbyu = r ! = a(x — 1), o
being negative, and € [—1, 1]. Once more the functions are given as a sum of Chebyshe
polynomial inx.

2.2. The Matrices

Before doing any operator inversion, one has to take care of singularities at the ori
and at infinity. For example, because of divisionrBythe solution of the equation, must
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be decreasing a< at the origin to be associated with a nonsingular source. We choose
treat that by subtracting finite parts of the solution at the point of singularity.

Before describing that more precisely, let us mention another method for solving t
problem, presented in [12]. In [12] the functions are expanded on a new set of basis funct
that verify individually the regularity conditions (Galerkin basis). For example; + T;
is used in the kernel, making all the basis functions decreaseatghe origin.

¢ In the kernel, we have to take care of a singularity at the origin due to the division
r2. To avoid this we construct an operator without the finite parf @ft x = 0. Thus the
operator is, expressed in termsxgf

2
Af:ﬂ Z(df df0>_l(l+1)

df
75~ o v (f—f(O)—x&(O)), ®)

the sources being multiplied byw?.
¢ In the shells there is no singularity, so we can multiply the sourc§ and invert the
following operator

B B\ d? B\ df

¢ In the external domain Eq. (7), once rewritten in terms ef Fl becomes

2
u4(ﬂ—uf>=s. (10)

du? u2
We consider the three following possibilities.

—First multiplying the source by* in the external domain, a singularity occurs at
r = oo; thatis,x = 1. We handle it like in the kernel, by subtraction of the finite parf of
in 1, and we use the following operator

2
Af:ﬂ— I +1)
dx2  (x —1)2

df
<f - f(l)—(x—l)dx(l)) (11)

—If the source is multiplied by3, a singularity occurs = oo; that is,x = 1 and is
handled by the finite part method, so that the operator becomes

d?f 10+
dx2  (x—1)

Af = (x — 1) (f — f (D). (12)

—If the source is only multiplied by?, we invert the nonsingular operator
Af—(x—l)zdz—f—l(IJrl)f (13)
N dx2 '

In all cases we have to multiplyby «?. Let us stress that those three operators are n
fully equivalent in actual physical calculations based on iterative schemes. The effec
source (i.e.t“S) being given, the solution will have less high-frequency terms (Chebysh
polynomials of high-order), if the numbkiis high. Those high-frequency terms may cause
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instabilities in an iterative procedure, so we always use tBescheme except for a source
decreasing like3S at infinity.

As an illustration, here is the matrix constructed in the kernel, With 2 and nine
coefficients inr (Chebyshev polynomial®, Ty, ..., Tie)

56 96 304 480 936 1344 2144
56 240 472 1056 1656 2832 3992
144 432 848 1632 2512 3944
264 688 1320 2336 35

eNeNeolNeolNolNolNolNolNo)

0
0
0
0
0
0
0
0
0

0

0 O

0 O 0 416 1008 1888 316B.
0O O 0 0 600 1392 255

0O O 0 0 0 816 184

0O O 0 0 0 0 106

0O O 0 0 0 0 0

2.3. The Banded Matrices

The constructed matrices are not suitable for numerical purposes. The inversion wouls
much more rapid and much more efficient if we could work on banded matrices insteac
triangular ones. The operators being second-order operators on a set of orthogonal funct
there must exist a linear combination of the lines so that the matrices are reduced to ba
ones (see [18]).

We exhibit here the combination we used in each domain:

¢ In the kernel, the Chebyshev polynomials are either odd or even, depending on
parity ofl. The combination is independent of the actual valueefcept for its parity.
When the Chebyshev polynomials are even we use

Li = (1+8y)Li —Liz2 (for0O<i <N-3 (14)
=L — Liso (for0<i <N -5 (15)
Li =0 —Lipa (for0<i <N —5) (16)

and when they are odd we use

Ei =L — L (forO<i <N-3) (17)
fi=L —L, (for0<i<N-5) (18)
Li=Li—Li1 (foro<i<N-=5), (19)

whereL; denotes the line numbeandN is the number of Chebyshev polynomials involved
in the expansion. In both cases the resulting matrix is a 4-band one.

¢ In the shells, the basis of decompaosition contains all the Chebyshev polynomials. -
combination is

O (1+686)Li — Liso
' i4+1
Li = Ei — Ei+2 (fOI’Ofi

(forO0<i < N-3) (20)

IA

N —5). (21)

IA
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The resulting matrix is a 5-band one.
¢ In the external domain, the combination depends on the type of constructed opere

—1If the source is multiplied by* the combination is

Li = (1+8)Li —Liyz (for0<i <N-3) (22)
Li=Li — L (for0<i <N —5) (23)
L =L —Liya (for0<i <N-—5) (24)
Li=L—L, (for0<i <N —5). (25)

The resulting matrix is a 4-band one.
—If the source is multiplied by® the combination is

Ei = (1—|—8|0)L| — Li+2 (fOfOfl <N-=-3 (26)
Li =Li — Lis (for0<i <N -5) (27)
Li =0 + Cisa (for0<i <N —5). (28)

The resulting matrix is a 4-band one.
—If the source is only multiplied by?, the combination is the same as the one use
in the kernel for even polynomials. Thus, the resulting matrix is a 6-band one.

Of course to maintain the solution, the same linear combination is performed on
coefficients of.

The banded matrix associated with the one presented above (in the kerrlebazthnd
N =9)is

0 0 56 —336 —200 0 0 0 0

0 0 56 96 —488 336 0 0 0

0 0 0 144 168 —-672 -504 0 0

0 0 O 0 264 272 —-888 704 0

0 0 O 0 0 416 408 —1136 —2000 | .
0 0 O 0 0 0 600 1392 1488

0 0 O 0 0 0 0 816 1840

0 0 O 0 0 0 0 0 1064

0 0 O 0 0 0 0 0 0

2.4. Homogeneous Solutions

Due to the presence of homogeneous solutions, the banded matrices are not inver
The operator given by Eq. (7) has two homogeneous solutions whiaH aredr —(+9,
Those functions are eigenvectors of the matrix with the eigenvalue 0. In the kernel and
external domain, the use of the finite part of the solution can sometimes introduce o
homogeneous solutions.

Let us summarize the number of such eigenvectors in each case:

e Inthe kernel the solution in~!+V is singular for = 0 and so is not taken into account.
We have one additional homogeneous solution, arising from the finite Toafidr | even
andT; for | odd.
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The parity of the Chebyshev polynomials is the same as that@the eigen-vectors are:

—Toonly forl = 0.
—Tyonly forl = 1.

—r! andT, for | > 2, even.
—r! andT; for | > 3, odd.

¢ Inthe shells we have to take into account the two usual homogeneous solutions, wi
are not singular in this case. We could remark thdtii exactly described by the Chebyshev
expansion, and so implies an exact zero determinant for the matrix, it is not the case for
fractional solutiorr ~(+V, This one is not given by a finite sum of Chebyshev polynomial
but rather by an infinite sum implying the result would be worse and worse as the num
of coefficients increases, because the determinant of the matrix would be closer and cl
to 0. So, to deal with this, we have to take into account that the eigenvalue 0 is of orde
even ifr =1+ only becomes an exact eigenvector for an infinite number of coefficients.

e In the external domain, the solutiohis singular at infinity except for= 0.r~(+b
is always acceptable.

If the source is multiplied by#, the finite part introduces two other eigenvectors of
eigenvalue 0 Tp andT;. So the situation is:

—TgandT; forl = 0.
—To, To andr ~4+D for| > 1.

If the source is multiplied by?, the finite part only introduces one other eigenvector o
eigenvalue 0Ty, and the situation is:

—To andr ~4+D for all I.

If the source is multiplied by?, there are no other solutions other than the usual one
which give:
—TgandTy forl = 0.
—r~+Dfor| > 1.

From the above discussion we are able to determine the prafehe eigenvalue 0. The
banded matrices are then amputated from {hist columns and theplast lines resulting
in invertible banded matrices. We abandon pHast coefficients of the source. Doing so,
we find a particular solution of the system which hagitast coefficients undefined and
thereafter set to zero.

In particular the previously presented matrix (in the kernel, for2 andN = 9) becomes

56 —336 —-200 0 0 0 0
56 96 —488 336 0 0 0
0 144 168 —-672 -504 0 0
0 0 264 272 -—-888 704 0
0 0 0 416 408 —-1136 —-2000
0 0 0 0 600 1392 1488
0 0 0 0 0 816 1840

Before solving the system, drlJ decomposition is performed using Linear Algebra
Package (LAPACK) [19] for purpose of rapidity. LAPACK is also used for the resolutiol
of the system.
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2.5. Regularity and Boundary Conditions

In this section we will show how some homogeneous solutions are used to maintain |
ularity and satisfy the boundary conditions. We will concentrate on the boundary condit
f = 0 at infinity.

e In the kernel, the operator is singular only for 2. If it is the case, to maintain
regularity,f has to verify the following conditions:

f(0)=0 (29)
f(0) = 0. (30)

Thanks to the parity of the Chebyshev expansion, one of these conditions is always fulfil
depending on the parity f So we perform a linear combination of the solution with eithel
To or T, to fulfill the other one. Nothing has to be done fox 1.
e In the shells, nothing has to be done for there are neither boundary conditions
singularities.
¢ In the external domain we should, once more, discriminate between three cases:
—If the source is multiplied by#, we must imposd (1) = 0 to satisfy the boundary
condition; this is done by performing a linear combination of the solutionTgn@ihen for
| > 1, for reasons of regularity, we must hat/&1) = 0, a condition which is obtained by
linear combination withr;.
—In the case of a source multiplied by, the boundary conditiorf (1) = 0 ensures
regularity; we impose it by performing a linear combination of the solutionTgnd
—Ifthe source is multiplied bg?, the situation is a bit more subtle. There is no conditior
of regularity, but the boundary condition imposes tligt) = 0. Then one can show that
this implies that the source decreases &st infinity. Conversely, if the source decreases a
r =3, itimplies, forl # 0, thatf (1) = 0. So to verify boundary conditions we only consider
sources decreasing Bs°. It implies that the boundary condition is automatically verified
forl #£ 0. We only impose it fol = 0, by doing a linear combination of the solution ard
Let us emphasize that this is only the theoretical aspect of the problem. During an ac
physical calculation, the sources of the Poisson equation are themselves numerically ¢
so that they might not decrease, due to computational errors, exactly fikén such a
case one should be cautious, for the solution will not exactly be zero at infinity. A possil
treatment is to enforce thie® decay by slightly modifying the source prior to the resolutior
of the Poisson equation.

2.6. Continuity

At this stage, for eacH,(m), we are left with a particular solution in each domain, one
homogeneous solution in the kernel and in the external domain, and two in each shell.
last linear combination will be performed to ensure the continuity of the solution and of
first derivative across each boundary.

The simplest case is when the angular sampling is the same in every domain (i.e.,
same numbers of point thand¢). The unknowns are the coefficients of the homogeneol
solutions in the physical solution and the equations are given by maticninljts derivative
across each boundary. It is easy to see that there is exactly the same number of equ:
and of unknown quantities, resulting in a uniquely determined solution.
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If the angular sampling is not the same, the situation is a bit more complex; because s
Y™ may not be present in some domains. At each boundary, for eau}; three situations
can occur:

e the harmonic is present in the two domains: we perform the matching of bathits
derivative.

e the harmonic is present in neither domains: no equation is written.

e the harmonic is present only in one domain: we assure the continuitgugfposing
that the harmonic has its coefficient equal to 0 in the domain where it is not present.
perform no matching for its derivative.

This procedure results in a system of equations that admit a unique set of solutions.
have imposed exactly as much continuity as the sampling allowed us.

To illustrate this, let us take the situation given by Table | for a specific valug (In this
situtation the domain 0 is the kernel and the domain 4 is the external compactified reg
The column labeled|™ denotes the presence or the absence of the considered spher
harmonic in each domain. The particular and homogeneous solutions are expressed tz
into account the sampling and the nature of each domain. The unknowns are the coeffici
of the homogeneous solutions labeledor r' and g for r ~1+Y. Using the procedure
described above we obtain the following equations:

e Forr = Ry, the spherical harmonic is present in both domains, so we have to write t
continuity of the solution and its derivative, which gives

fo(Ry) + eoRy = f1(R) + 1Ry + 1Ry 1Y (31)
fo(Ry) +1aoR! ™ = /(R +1aaR{ ™ — (1 + DR 2. (32)

e Forr = Ry, the spherical harmonic is present only in the domain 1 and so we wri
only the continuity of the solution assuming that it is zero in the domain 2

f1(Ro) + 1R, + B1R, VTP = 0. (33)
e Forr = Rs, no equation is written, for the harmonic is absent on both sides of t

boundary.
e Forr = Ry, the situation is the same asrat: R»

fa(Re) + B4R, TV = 0. (34)

TABLE |
Example of the Situation before Making the Connection across Each Boundary

Particular Homogeneous
Domain Bounds y" solutions solution Unknowns
0 0<r<R Yes fo r! ao
1 R<r<R Yes fa r' andr—0+b a; andp,
2 R <r < R3 No
3 Ri<r <R No
4 R, <r <oo Yes fs r-+b Ba
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We have now four independent equations which are solved to find the unkiagyins
B1, andps.

All this procedure enables us to find a unique solution of the scalar Poisson equat
solution to be regular everywhere, continuous, like its derivative, and that is zero at infin
We should point out, once more, that the source must decrease at leadfasthis to be
possible.

3. CONVERGENCE PROPERTIES OF THE SCALAR POISSON EQUATION SOLVER

3.1. Position of the Problem

We now study the convergence of our algorithm, depending on the number of coefficie
chosen for the-expansion. The number of points fdand¢ does not change the precision
of the result, as long as we have enough points, that is, enough spherical harmonic
describe the source properly. However, concermjnge perform matrix inversion and we
expect a better precision as the number of coefficients increases.

It is well known (see [8, 9]) that with spectral method, the error is evanescent, i.
decreasing as exp(N), N being the number of coefficients, as long as we are workin
with functions that ar€. If the functions are onl¢®, the error is decreasing & (P+D
solely. This is known as the Gibbs phenomenon.

The various domains of our multidomain method [13] are intended to fit the surfaces
discontinuity, for example, the surface of a star (see [20] for an application to stars w
discontinuous density profiles, like strange stars). Doing so, each functifh is each
domain, removing any Gibbs phenomenon.

Totestthe validity of our numerical scheme, we compare calculated solutions to analyt
ones. We estimate the relative error as the infinite norm of the difference over the infir
norm of the analytical solution. We will present some examples for the construction
analytical solutions. Using onlg>° functions we expect errors to be evanescent.

But this is not so simple. It can be easily shown that, generally, the particular solutic
obtained by the inversion of the operator for eakchnf) are of polynomial or fractional
type. Those functions are exactly described by Chebyshev polynomiats i, This is
true except in two cases, related to the homogeneous solutions:

e asource ir'~2 will give rise to a particular solution in' Inr .
e asource i~ will be associated with a particular solutionrin+? Inr.

In such cases, we expect some problems, for the description of logarithm function:
terms of Chebyshev polynomials may not be accurate. To be more precise about this ef
let us study the situation in each type of domain.

3.1.1. In the kernel. In the kernel and for reason of regularity, sources ii*® are
obviously never present. At first glance, the case of a sourc& fhseems to be more
problematic, but let us recall that this source has to be the factgf"ofCan we have a
source containing terms likg™r'~2? To answer this question we refer to [10] where it
is shown that, for a regular function (i.e., a function, expandable as a polynomial sel
in Cartesian coordinates,(y, 2 associated withr, 6, ¢)), terms liker*Y™ are present
in the spectral expansion onlydf > |. So, sources leading to a In function in the kernel
are not regular at the origin. To conclude, we expect no problem connected with partici
solutions containing logarithm functions in the kernel, at least with physical regular sourc
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However, let us mention the fact that if the source is the result of some calculation, it mi
contain some nonphysical terms due to computational errors. Those terms might give
to some logarithmic functions.

3.1.2. In the shells. As usual there are no regularity prescriptions in the shells. The tw
types of particular solutions can appear. To investigate more precisely the effects of
logarithm, we studied the behavior of the error performed by expanding the two types
particular solutions in Chebyshev polynomials.

We constructed the two following exact particular solutiohsr andr ~/+V Inr and
approached them by a sum of Chebyshev polynomials the relation between andx
beingr = ax 4+ B. Then, we estimated the error by the same method as the one descril
previously.

Figure 1 shows an evanescent error. The functions containing logarithm are thus ra
well described in a shell. This is due to the fact that the In functions are bounded in st
domains and not going to infinite values. More precisely ther andr =+ Inr functions
areC™ in the shells so that the error should be evanescent. Let us mention that this re
does not depend on the choice madefa@ndg. To conclude we expect no problem to rise
from the presence of such particular solutions in the shells.

3.1.3. In the external compactified domairThe particular solution in' In r is not
going to zero at infinity and so cannot appear in the external domain. But the other ty
of particular solutiorr =4V Inr is likely to appear. We investigate the effect by the same
method as the one used in the shells, that is, determining the behavior of the error mad
interpolating the exact solution by a finite sum of Chebyshev polynomials.

Figure 2 shows that the error is no longer evanescent but follows a power law. The errc
decreasing faster and fastell @ascreases, because the associated particular solution is bei

Error

5 10 15 20 25 30 35
Number of Chebyshev coefficients

FIG.1. Relative difference (infinite norm) between the particular solutions with logarithm and their truncat
Chebyshev expansions, in a shell. The scale for the number of coefficients is linear. The solid lines represer
r'Inr functions and the dashed lines theé'+Y Inr ones. The circles represent the chse0, the squares= 1,
and the diamonds= 2. This plot has been obtained usimg= 0.5 andg = 1.5.
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Error
-
=)

.
:

Number of Chebyshev coefficients

FIG.2. Relative difference (infinite norm) between the particular solutions with logarithm and their truncat
Chebyshev expansions, in the external domain. The scale for the number of coefficients is logarithmic. The ¢
represent the case= 0, the squarels= 1, and the diamonds= 2.

better approached by Chebyshev polynomials. In other words, the fumctio® Inr =
—uM™DInuis notC>, for its (I + 1) derivative contains terms if?, not regular at spatial
infinity, that is foru = 0. More precisely, Fig. 3 shows the value of the exponent as
function ofl.

We can conclude that the error made by expandirig® In r Chebyshev polynomials
follows a power law and that it is decreasing faster tNa3!*2 . We will use this to explain
some features of our scalar and vectorial Poisson equation solvers.

-2 p

12 t B

Exponent of the error power—law

17 + 4

_22 1 1 il
0 2 4 6 8
Spherical harmonic index |

FIG. 3. Exponent of the power law followed by the error shown in Fig. 2, as a functibn of
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3.2. Accuracy Estimated by Comparison with Analytical Solutions

From the results of the previous section, we expect an evanescent error for the resolt
of the scalar Poisson equation when there is no particular solution containing any logari
in the external domain and an error follows a power law when such solution do appear.
present here some results that illustrate this behavior and lead to two properties abou
error.

3.2.1. Spherically symmetric sourcerirst of all, let us consider a simple case for which
we do not expect any Gibbs-like phenomenon: a spherically symmetric source decrea
asr—*. In fact, the only harmonic present in this source s 0, which would imply a In
solution only for a source in~—3. We choose a sourc@decreasing as~* in the external
domain and a polynomial one, such that the solution is not singular in the kernel. T
associated solutioR can be found analytically.

In the external domain, far > R, we have

R® RS 17R*
S——: F=— _— % 35
r4’ 2rz2 1571’ (35)
and forr < R,
r2 Rz r4 3
S=R-——; F=——-_—->R%. 36
R’ 6 20R 4 (36)

As expected Fig. 4 shows an evanescent error, with some saturation at the levetof 1
due to the round-off error, the calculation being performed in double precision. No sign
cant difference can be seen between the three schemes.

0"+

-14

107 |

10

10 20 30
Number of Chebyshev coefficients

FIG. 4. Error on the resolution of the scalar Poisson equation for a spherically symmetric source extenc
to infinity. The solid lines represent théS scheme, the dotted lines th&S scheme, and the dashed linesith8
one. The scale for the number of coefficients is linear. The circles represent the error in the kernel, the squar
the shell, and the diamonds in the external domain.
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3.2.2. Compact source. Another interesting case is that of a source with a compa
support, that is, a source which is zero in the external domain. As for the previous case
do not expect any Gibbs phenomenon. In the external domain let us choose the follov
analytical solution

1
0
F=Y 1 (37)

This solution leads to a source that vanishes in the external domain. To avoid any singul:
at the center, we choose the latter function as a solution of the equation<fd

r2 r4
F=Y0 [(z +5) 5z — (@43 RZHS] (38)

This solution has been chosen so tRaand its first derivative with respect toare
continuous ar = R, properties of the solution given by our algorithm. The associate
source, for < R, is found by taking the Laplacian &f

2
s=Y? [(ZI +5@ +3)—5—= R2|+3 — (2 +3)(4l + 10 =2 +5} (39)

So we constructed a nonspherically symmetric compact source, which contains only
spherical harmonic. We chose for simplicity= 0, because we do not expect any variatior
with m, the latter than being absent of the inverted operator.

As expected, Fig. 5 shows an evanescent error down to a saturation value of approx
tively 10~%4.
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FIG. 5. Error on the resolution of the Poisson-like equation for a nonspherical compact sour¢e=nth
The scale for the number of coefficients is linear. The circles represent the error in the kernel, the squares i
shell, and the diamonds in the external domain.
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3.2.3. Alogarithm in a shell. The last case with an evanescent error we considered is tl
one where the problematic particular solutions (i.e., containing a logarithm) appear onl
a shell bounded bfR; < r < R,. We choose a sourasghat implies the appearance of both
types of particular solutions. L€tbe the associated solution. In the shell,Rar< r < Ry,
we have

1 z?
Shell = r73+3r72 -1

Inr InR—1 1 z2 1 nR, 1 R® 1
Fshel=—— 4+ ———— 4+ — + (3= —1|( =r?Inr — )24 22
shell ==~ + +R2+< r2 >(5 ( 5 +25> +25r3>

(40)

For simplicity, we takeS = 0 in the kernel and in the external domain, the solution bein
chosen, once more, by continuity across the boundaries

1 1 IR —INRy , [ 2
Feemel= — — — + ————=r? (3= —1
kernel R2 Rl 5 r2
(41)
NR;—INR, 1R -R /[ 7
Fexternal= r + E 25 3r_2 -1).

The result presented in Fig. 6 shows an evanescent error, confirming that the presen
a logarithm function is only a problem in the external domain. Once more let us menti
that this is due to the fact that the logarithm functions are bounded in a shell and not gc
to infinite values. Such bounded functions are rather well described in terms of Chebys
polynomials.

_2

Error

Number of Chebyshev coefficients

FIG. 6. Error on the resolution of the scalar Poisson equation for a solution containing bounded logarit!
functions. The scale for the number of coefficients is linear. The circles represent the error in the kernel, the sq
in the shell, and the diamonds in the external domain.
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3.2.4. The Gibbs phenomenoriet us now consider a case where the particular solutio
contains a logarithm in the external domain. Following the construction of the source
solution in Section 3.2.2 let us take the following source in the external domain.

1
_ _y0
andS= 0 forr < R. The associated unique solution is
0 r'
In(r) — IN(R) + 5= “
F=Y° 251 forr > R.
(2 + Dyri+t

Figure 7 presents an example of the obtained results for each of the three sche
discussed in Section 2.2. A logarithm being present in the solution, the error is no lon
evanescent and it follows a power law. One important feature is that*®escheme is
converging much less rapidly than thtSandr 2Sones. This may be due to the fact that for
a given source, the* S scheme is dealing with particular solutions less rapidly decreasin

In Fig. 8 the slope of the power law is plotted as a function of the harmonic ihdex
for the three different schemes. It reveals an error decreasiitg &5 for ther?S and
r3S schemes and ad 2 for ther*S one. Let us mention that théS scheme yields an
error following the same power law as the one rising from the description of the associc
function (cf. Section 3.1.3), making us confident about the origin of such a behavior.

107% r : ; . —
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Error
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FIG. 7. Error on the resolution of the scalar Poisson equation for a solution containing In functions fr
The scale for the number of coefficients is logarithmic. The circles represent the error in the kernel, the squar
the shell, and the diamonds in the external domain. Solid lines represent the schenf&yttie dotted ones the
scheme with 3S, and dashed lines the scheme witi$.
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—-10 +

Exponent of the error power-law
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Spherical harmonic index |

FIG.8. Exponentofthe power law followed by the error shown in Fig. 7 as a function of the indibe solid
lines correspond to the!'S scheme, the dotted lines to th&S scheme, and the dashed lines to thg scheme.
The circles represent the error in the kernel, the squares in the shell, and the diamonds in the external doma

3.3. Convergence Properties

All the examples shown in the previous section enable us to propose the two followi
empirical properties concerning the decrease of the error.

Property 1. If the source is decreasing as* at infinity and does not contain any
spherical harmonics with> k — 3, then the error is evanescent.

Property 2. If the source decrease at leasta¥ at infinity, then the error decreases at
least adN 2k (resp.N~%) for ther2S andr 3S schemes (resg'S scheme).

The first property is just issued from the presence of a In function in the external dom.
and the second property comes from the values of the power law found in the previ
section.

4. VECTORIAL POISSON EQUATION

Using the Poisson equation solver from Section 2 and studied in Section 3, we fo
now on the vectorial Poisson equation given by Eg. (2), in the nondegenerated case
A £ —1).

Let us first mention that the operatar+ )ﬁ(@-) has been shown to be strongly elliptic
and self-adjoint in [5, 6] in the case= 1/3 (conformal Laplace operator). Conditions
for existence and uniqueness of solutions have been presented in Appendix B of [4].
harmonic vectorial functions of this operator and the associated multipole expansions t
been discussed B9 Murchadha [21].

Three different schemes have been previously proposed by other authors [14-16
reduce the resolution of Eq. (2) to those of four scalar Poisson equations. Let us emphz
that those three schemes are not covariant. They are only applicable in Cartesian coordi
which allow us to commute operators like Laplacian and gradient.
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Let us mention the fact that a different method, based on solving for the degenerated
(i.e.,» = 1) has been proposed in [10] but is not studied in the present work.

4.1. The Bowen-York Method

The idea of this method (see [14]) is to search for the solution of Eq. (2) in the form

N =W+ Vy, (44)

whereW andy are solutions of
AW =S (45)
Ay :_%H%.\Tv. (46)

This method gives a solution to Eq. (2) but let us check that this solution is the one t
is C1. W is C2, being a solution of a Poisson equation. This implies that the source of t
equation fory is continuous, and that is C2. This is sufficient to ensure thatis C1. The
scheme finds the only solutigit and one going to zero at infinity.

Unfortunately this very simple method is not applicable with our Poisson equation solv
because the physical sources are not decreasing fast enough at infinity. For the problen
motivated this study, namely binary neutron star systems [22, 23], the g_éuf(Eq. (2)is
expected to behave like at infinity implying that we can calculat. This vector field
is acting liker ~* at infinity, because —* is a homogeneous solution of the scalar Poisso!
equation usually present (monopolar term).

So the source of the equation fgr being the divergence oW, behaves like ~2. This
decreasing is not fast enough to compute the value. &nalytically no problem occurs
because only the gradient gfis relevant, noty itself, for the calculation of the solution.
To summarize, the implementation of this scheme conducts to the computation of diver
quantities, making the result wrong in the external domain. We should say that this schq
is applicable for domains not extending to infinity. However, it may be possible to use it
treating analytically the diverging quantities.

4.2. The Oohara—Nakamura Method

In this case (see Section 3.1.1 of [15]) we start by solving the following scalar equati

1 . -
Ay =——%.8 47
| (47)

Then the solution of Eg. (2) is found by solving the following set of three equations

-

AN = S—AVy. (48)

Comparing (2) with (48) shows that this scheme gives the exact solution of Eq. (2) if g
only if

<
=

Il
<
A
51

(49)
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But the scalar equation (47) only ensures that
A(x —V-N)=0. (50)

From Section 2, we can show that it is possible to construct a homogeneous solutio
the scalar Poisson equation, in all spaces that is nonzero, going to zero at infinity, if :
only if that solution is not’*.

Inthe general cas¥, - Nis onlyCP at the boundary between the different domains, while
X, solution of a Poisson equation,ds. So it is possible to fulfill Eq. (50) and not Eq. (49).
If V- NisC, then Eq. (50) implies, as shown in Section 2, that V - N. In this case,
the condition (49) is trivially fulfilled. Imposing tha - N is at leasC? is equivalent to
imposing thatS is continuous across every boundary.

To conclude, let us say that the Oohara—Nakamura method gives the exact solution if
only if the sourceSis continuous across every boundary delimiting the different domain
This property is general, meaning that it is not due to our numerical method. We c
mention that the found solution is tidé one, because it is calculated as solution of thres
scalar Poisson equations.

Next let us see if this scheme is applicable, using our scalar Poisson equation solvel
first glance this scheme suffers the same drawback as the Bowen—York scheme. Bec
of homogeneous solutions of the scalar Poisson equatichdecreasing as * at infinity
and its gradient as~2, which is not enough to allow us to solve the set (48) of three scal
Poisson equations.

The difference is that the solution of Eq. (48) is the solution of the vectorial Poisst
equation (2) and we must be able to set it to zero at infinity, contrary to the Bowen-Yc
method where the problem occurs for auxiliary quantities.

So it must be possible to show that the source of Eq. (48) decreases fast enough, that
least as —3. The problem arises from the monopolar ternyof.e., the only one that gives
an homogeneous solution i in the external domain. It is known, that the monopolar
term My of the solution of a scalar Poisson equation with sourcis given by

iﬂ / / / o, (51)

the integration be|ng performed over all spaces.
Now we haver = V - S. The use of Green formula leads to

_%//é-dé, (52)

the surface integration being done at infinity. Bilecreases as, implying that the
surface integral is zero, that is]o = 0. This remains true if the source acts only like?.

So the monopolar term of is zero, which implies that decreases at leastias’. This
behavior ensures that the source of Eq. (48) decreases adlowing us to find the unique
solution going to zero at infinity.

We implemented and tested this scheme, recalling that it is only applicable if the sou
of Eq. (2) is continuous and requires that the source decreases at least lienfinity.
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4.3. The Shibata Method

The solution is now found as (see [16])

Ir+2- 1 & - > 2
+ W—-_-——(Vx+VW.r), (53)

N=_-""2
2h+1  2a+1

whereW andy are solutions of

=
Il

A S (54)
Ay =—T-S (55)

=

andr denotes the vector of coordinates ¥, z).

This scheme gives a solution to Eg. (2), but, as with the Bowen—York method, let
quickly check that it is the uniqué' going to zero at infinity. At infinity,\TV, a solution of
scalar Poisson equation, is behaving at leastrlike This ensures thal W - T is zero at
infinity, proving that the solution goes to zero.

Concerning the continuity, being solutions of scalar Poisson equations, we know t
bothW andy are at least?. But we have to take care of the teRry + VW - F of Eq. (53).
First we can show that

AF-W)=F-S+2V-W. (56)
Using that property and the equation fpwe can see that
AF-W+x) =2V -W. (57)

The source of that equation ¥, so thatf - W + x is C2. The term of Eq. (53), can be
expressed as

Vx +VW.-F=V{F- W+ yx) - W. (58)

Using the continuity properties found above, it is easy to see that the right-hand side
Eq. (58) isC*, which ends our demonstration by proving that the calculdtesiC?.

As before, let us now check if this method is applicable by means of our scalar Pois
equation solver. The source of the equation fodecreases at least like® at infinity if
and only ifSdecreases like=. Like the Oohara—Nakamura scheme, this scheme does r
involve any diverging quantities and so is suitable for numerical purposes.

This method has been implemented and, contrary to the Oohara—Nakamura method
be used even with discontinuous source, but requires§lnm:reases at least like* at
infinity, which, let us recall, is the case for the physical problems we intend to study.

4.4. Convergence Criterion

As seen before the resolution of Eq. (2) reduces to that of four scalar Poisson equati
So we should be able to use the results of Section 3.3 to establish a convergence crit
for the schemes proposed in [15, 16].
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4.4.1. The Oohara—Nakamura schemket us suppose that the sour&eof Eq. (2)
contains only one spherical harmoMg and decreases ask at infinity (k > 3).

For the Oohara—Nakamura method, the source of the first Poisson equefﬁoé:isshe
degree of the harmoniclis+ 1 and the decrease isras**?, These two effects are opposed
concerning the convergence properties established in Section 3.3. So, in the case whe
logarithm appears during the calculation to findy contains one spherical harmohi¢ 1
and decreases as*~b and soV X, part of the source of Eq. (48), contains one spherica
harmonic withl + 2 and acting like ~ at infinity. So the conditions for the appearance of
a Gibbs-like phenomenon are “harder” by two degrees than for a scalar Poisson eque
and occurs for a source with a spherical intlex2.

4.4.2. The Shibata schemeSuppose we consider the same source as in the previo
section. The convergence properties for the equatioﬁ/fare the same as those for a usual
scalar Poisson equation.

Concerning the equation for the source is-t - S Performing such an operation &
increases the degree of the spherical harmonics by one unit. At the same time, the deci
of the source is slower, due to multiplication bgverywhere. Those two phenomena have
the same effect on the convergence criterion we previously established. As for the Ooh:
Nakamura scheme, the criteria are “harder” by two degrees but the Gibbs-like phenome
occurs for a source ih+ 1.

4.4.3. Convergence propertiesWe are now able to deduce convergence properties fc
the two schemes. From the study above, we can see that if the condition for the appear
of the Gibbs-like phenomenon is the same, it is not associated with the samé.imties
results in the two following properties:

Property 1. If the source of a vectorial Poisson equation is decreasing“aat infinity
(k > 3 for the Oohara—Nakamura scheme &ne 4 for the Shibata scheme) and does nof
contain any spherical harmonics witk» k — 5, then the error is evanescent.

Property 2. If the source decreases at least @sat infinity then the error is decreasing
at least adN —2k=2 for the Oohara—Nakamura methdd# 3) and at least all ~2&= for
the Shibata methok (> 4).

5. ACCURACY OF THE VECTORIAL POISSON EQUATION SOLVERS ESTIMATED
BY COMPARISON WITH ANALYTICAL SOLUTIONS

To check the validity of the schemes and their convergence, we used the same methe
that used for the scalar Poisson equation, that is, the use of analytical solutions of var
properties. The solutions associated with the sources have been obtained by follov
analytically the Shibata scheme.

5.1. Continuous Source

Let us consider the case of a continuous source extending to infinity, say, for example
the external compactified domain, foe- R
X X y Z z

= (45 = (45 S = [ nt5 (59)
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and forr < R

X g_ Y . g z

SX _ . J—
T Rn+5’ Rn+5’ T Rn+5T

(60)

Note that this source &°, the minimum requirement for the Oohara—Nakamura method 1
be applicable.
Forn # 0, the associated solution in the external domain is

x 1 X n+5 X (61)
T A+Dn(n+3)r+3 (L +1)151 Rr3
and forr < R
1 r2 n+5
" X + X 62)

T 100r + 1) R™5 (A + 1)B(n + 3) R’

the other components being obtained by permutation gfandz.

Forn # 0 no Gibbs-like phenomenon occurs by solving the equations@vdm source.
Forn < 2, a Gibbs-like phenomenon should appear due to the vectorial nature of Eq.
This is not the case because of simplifications due to the symmetry of the source. It
shows that the two convergence criteria established above are rather pessimistic. The ev
cent error is shown in Fig. 9. As for the scalar case, a saturation is attained at a leve
approximately 101,

Error

5 10 15 20 25 30 35
Number of Chebyshev coefficients

FIG.9. Erroronthezcomponent for a continuous source extending to infinity (Egs. (59) and (60pwth).
The scale for the number of coefficients is linear. The solid lines represent the Shibata scheme and the d:
lines the Oohara—Nakamura scheme. The circles represent the error in the kernel, the squares in the shell, e
diamonds in the external domain.
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5.2. A Vectorial Gibbs-like Phenomenon

At this point, we exhibit an analytical solution that produces a Gibbs-like phenomen
which arises from the vectorial nature of Eg. (2). Let us consider the following source

z

= = (63)
in the external compactified domain, and fox R
z

We set the two other components to zero in all spaces.

If we solve the scalar Poisson equation wghas source, the error will be evanescent,
as shown in Section 3.3. But, according to the conclusion we obtained concerning
convergence criterion of a vectorial Poisson equation, a Gibbs-like phenomenon shc
appear due to the vectorial nature of Eq. (2).

In the external domain, the associated solution is

2 2
NX:—}—A {zﬂx( o +In(R) — In(r)) 7r27x

2141 14 10r5R2
X /59 In(r)—In(R) 7 X
350 5 30r3Rz
1 A [Zy/ 9 7 2%y
NY=—>——|—=(——=+In(R) =1 —
2,\+1[r7< 14 TINR - n(r)>+10r5R2 )
y 59+In(r)—ln(R) 7y
350 5 30r3R2
1A+2 1 7 1 1 A z 9
N? = = - — - = ——-—— +In(R) — 1|
2k+1z<105 30r3R2) 2)\+1L7< 14 TN nm)
+ LA (In(r) In(R)) + e ! _z
10 R?rs 175 15r3R?
and forr < R, we found
o lh (22 1r? 71
2.+1 \35R”  35R’ 75R®
1 22 1r% 71
NY ="y = = 66
2A+1y<35R7+35R7 75R5> (66)

, 1)»+2<1r2 71) 1 X <222 1r? 71)

R — _772 S —
21 +1 \10R” 30R® 212+1 \35R” 70R” 150RS

As expected, Fig. 10 shows an error obeying a power law. This feature is more evid
in the external domain where the particular solution is directly present. The Gibbs-Ii
phenomenon appears for the two schemes. Let us apply Property 2 to determine the expt
of the power law. The source of the equation decreases’aghis implies that the error for
the Oohara—Nakamura scheme should decrese at lebist?aand asN —° for the Shibata
scheme. This is well confirmed for the Shibata scheme which exhibits an exponent —
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FIG.10. Error on thezcomponent for a source implying a Gibbs-like phenomenon. The scale for the numk
of coefficients is logarithmic. The solid lines represent the Shibata scheme and the dashed lines the Ool
Nakamura scheme. The circles represent the error in the kernel, the squares in the shell, and the diamonds
external domain.

For the Oohara scheme it turns out that the criterion is rather pessimistic because the
decreases faster thair12.

5.3. A Discontinuous Source

As previously explained, the Ochara—Nakamura scheme fails to solve Eqg. (2) in the c
of a discontinuous source. We will now consider such a source and show that the Shil
method is efficient, even in such a case.

In the compactified domaim, > R, we choose the following solution

X

Forr < R, we ensure the continuity of the solution and its derivative by choosing

N* = x(ar® + br#), (68)

wherea = —2“%26 andb = 2‘2:;24. The associated source is obtained by calculating th

left-hand side of Eq. (2). In the external domain we obtain

SX

X x3
nin—3-— SA)m +n(n+ Z)Am
X2y

rn+4

y
9 = —Anrn+2 +n(n+2)A

(69)
, z x?z
S = —)\,nm +n(n+2))\m
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Error
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FIG. 11. Error on thex component for discontinuous source (Egs. (69) and (70) with4). The scale for
the number of coefficients is linear. The circles represent the error in the kernel, the squares in the shell, an
diamonds in the external domain.

and forr < R, we have

S = x[(54+ 18var® + (284 120)br?] + ax3(24ar? + 8b)
S = ay[6ar? + 4br? + x?(24ar? + 8b)] (70)
& = rz[6ar? + 4br? 4 x?(24ar? + 8b)].

Depending on the value af, the error may or may not be evanescent. Only a fev
spherical harmonics are present in the source and we can show that we expect, for exar
an evanescent error for= 4 and a Gibbs phenomenon for= 5. This might seem not
to be in agreement with the convergence criterion previously established, but recall 1
it is rather general and much more pessimistic to handle simple sources such as the
considered here.

The results presented in Figs. 11 and 12 show that the discontinuity of the source
no effect on the resolution of the vectorial Poisson equation, as long as the Shibata sch
is used. Fom = 5, the source is like ~® at infinity and we expect an error decreasing
more rapidly tharN 6. Figure 12 shows an extremely good agreement with the predictio
because the power law exhibits an exponent of —6.4.

6. DEVELOPMENTS

In this section we present some extension of this work that is solving more complica
equations using the schemes presented here as milestones.

Thefirstextension that has been conducted regards nonspherical domains, with spher
shapes (i.e., they must have the same topology as a sphere). This is very useful for we
define the boundary of each domain to match with surfaces of discontinuity, like stel
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FIG. 12. The error is the same as in Fig. 11 but foe 5; the scale for the number of coefficients is now
logarithmic.

surfaces, so that each fieldi® in each domain preventing any Gibbs phenomenon. Thanl
to some mapping onto a sphere, solving the Poisson equations with such boundaries ret
to the spherical case, with correction terms appearing in the source. The equation is
solved by iteration. The method is described in detail in [13]. In that paper the calculat
of the Mac—Laurin and of the Roche ellipsoids have been compared with the analyt
solutions. The behavior of the error when one increases the number of coefficients hap
to be evanescent (see Figs. 5 and 6 of [13]). Those calculations being made in the Newtc
case, all the sources are compactly supported. This shows that the nonsphericity doe
introduce any new Gibbs phenomenon with respect to the spherical case.

Concerning calculations in general relativity (i.e., with sources extending to infinity
results have been obtained for rapidly rotating strange stars in [20] using nonspher
domains. Convergence properties have not been fully explored, because there exists nc
lytical solution to compare with. Anyway, we can suppose that with the sources contain
almost every spherical harmonic, the convergence will no longer be evanescent but
rather follow a power law.

Another important extension of this work deals with two bodies, for example, orbitir
binary neutron stars. This case has been successfully studied in [22, 23] by means o
Poisson solvers presented here. The main difference with the cases we discussed i
present paper is that the sources are no longer spheroidal but are concentrated or
spheroidal domains being the two stars. An equation of type (1) is then split into two pe

AF1 =9

71
AF =9, (r1)

where thereal sourceB= S + S. We use two sets of spherical coordinates, one centere
on each star and the splitting is done so t&ais mainly centered on the first star asgl
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Virial error
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FIG. 13. Relative error, estimated by means of the virial theorem, for a Newtonian irrotational binary st
calculation with respect to the number of Chebyshev coefficients.

on the other star (see [23] for details). The souiGeare then well described in spheroidal
topology and the total equation is well solved, the solution bé&ing F; + F,. We used
that method to compute Newtonian configurations and compare them with semianalyt
solutions. Figure 13 shows the error made with the same configuration as in Fig. 7 of |
for a coordinate separation of 100 km. This calculation being Newtonian, the sources
compactly supported and the error seems to be evanescent, but we have to be cautiot
the number of coefficients of the expansion is not maintained fixed. Extensive converge
properties have not been conducted but it seems that the splitting of the equation into
parts does not introduce any new Gibbs phenomenon. As for the single body probils
convergence of calculations with sources extending to infinity (i.e., in general relativit
has not been studied but we expect a Gibbs phenomenon to occur, because the so
contain almost every spherical harmonic.

To finish with the extension of this work let us mention the case of black holes. In th
case the equations are not solved in all space but only on the domain exterior to the hc
horizons. This means that we have to remove the kernel from the computational domain.
regularity condition at the origin is then replaced by a boundary condition on the bound:
of the innermost shell. We have been able to use that to impose a condition on the valu
the solution (Dirichlet problem) or on its first radial derivative (Neumann problem). Thi
extension has nothing to do with the compactified domain and we expect the converge
properties to be the same as those exhibited in the present work. We are currently appl
this to compute realistic, physical binary black hole configurations.

7. CONCLUSION

We have presented a scalar Poisson equation solver based on a spectral method. It er
us to solve the Poisson equation for a source extending to infinity and going to zero at I
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like r =3. Our multidomain approach enables us to deal with a source whi€liisn
each domain. Nevertheless some Gibbs-like phenomena can appear due to the exis
of particular solutions which contain logarithm functions in the external domain. Su
functions are not well described in terms of Chebyshev polynomials, resulting in a Gib
like phenomenon. We exhibited the conditions for the appearance of such an effect
quantified it, leading to the conclusion that, for a source decaying sk > 3), the
error of the numerical solution is evanescent if the source does not contain any sphe
harmonics with index > k — 3. Otherwise, the error decreases at leasNask—2, N
being the number of Chebyshev coefficients.

We used this scalar Poisson equation solver to solve the generalized vectorial Poi
equation given by Eq. (2) for a source going to zero at least fikeThree different schemes
have been discussed. We showed than the one proposed by Bowen and York [14] is
applicable to domains extending up to infinity, by means of our methods, because it g
rise to diverging auxiliary quantities. The scheme proposed by Oohara and Nakamura[1
applicable as long as the source is continuous and has been successfully implementec
last scheme, proposed by Oohara, Nakamura, and Shibata [16], is applicable even for
continuous sources and has been successfully implemented too. The convergence pror
of the two implemented schemes have been derived from the schemes of the scalar Po
equation solver and checked by comparison between calculated and analytical solutio
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